Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 796–812 | Cite as

An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates

  • Yao Yao
  • Dehai Luo
Original Paper

Abstract

This paper examines an asymmetric spatiotemporal connection and climatic impact between the winter atmospheric blocking activity in the Euro-Atlantic sector and the life cycle of the North Atlantic Oscillation (NAO) during the period 1950–2012. Results show that, for positive NAO (NAO+) events, the instantaneous blocking (IB) frequency exhibits an enhancement along the southwest–northeast (SW–NE) direction from the eastern Atlantic to northeastern Europe (SW–NE pattern, hereafter), which is particularly evident during the NAO+ decaying stage. By contrast, for negative NAO (NAO) events, the IB frequency exhibits a spatially asymmetric southeast–northwest (SE–NW) distribution from central Europe to the North Atlantic and Greenland (SE–NW pattern, hereafter). Moreover, for NAO (NAO+) events, the most marked decrease (increase) in the surface air temperature (SAT) in winter over northern Europe is in the decaying stage. For NAO+ events, the dominant positive temperature and precipitation anomalies exhibit the SW–NE-oriented distribution from western to northeastern Europe, which is parallel to the NAO+-related blocking frequency distribution. For NAO- events, the dominant negative temperature anomaly is in northern and central Europe, whereas the dominant positive precipitation anomaly is distributed over southern Europe along the SW–NE direction. In addition, the downward infrared radiation controlled by the NAO’s circulation plays a crucial role in the SAT anomaly distribution. It is further shown that the NAO’s phase can act as an asymmetric impact on the European climate through producing this asymmetric spatiotemporal connection with the Euro-Atlantic IB frequency.

Key words

North Atlantic Oscillation blocking temperature precipitation asymmetry 

摘要

本文分析了1950-2012年冬季大西洋-欧洲大气阻塞与北大西洋涛动(NAO)在生命周期(天气尺度)内的时空非对称关系. 结果表明, 对于NAO正位相(NAO+)事件, 瞬时阻塞频率(IB)主要分布在大西洋东部至欧洲东北部, 呈现出西南-东北向(SW-NE)的舌状分布, 并且在NAO+事件的衰弱期最为明显. 同时, 对于NAO负位相(NAO-)事件, IB的空间分布相比NAO+事件则表现出非对称的特征, 主要表现出东南-西北(SE-NW)向的舌状分布, 自欧洲中部延伸至北大西洋和格陵兰地区. 此外, 还研究了NAO与阻塞对气温和降水的时空非对称影响. 对于NAO-(NAO+)事件, 最大的温度负(正)距平出现在NAO的衰减期. 温度和降水的空间分布也呈现出与IB空间分布相匹配的特征. 同时, NAO与阻塞, 温度和降水存在时间上超前滞后的非对称关系. 最后, 诊断分析表明, NAO对向下红外长波辐射的调控可以显著地影响表面气温的变化. NAO通过对欧洲-大西洋阻塞的非对称的调控, 进而在天气尺度上对欧洲气候产生时空非对称影响.

关键词

北大西洋涛动 阻塞 时空非对称 天气气候 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (Grant Nos. 41505075 and 41790473) and the National Key Research and Development Program of China (Grant No. 2016YFA0601802). The authors also acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).

References

  1. Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, https://doi.org/10.1029/2005JD006290.
  2. Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655–666, https://doi.org/10.1007/s00382-005-0018-3. CrossRefGoogle Scholar
  3. Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.CrossRefGoogle Scholar
  4. Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic oscillation. J. Atmos. Sci., 61, 121–144, https://doi.org/10.1175/1520-0469(2004)061<0121: SVOTNA>2.0.CO;2.CrossRefGoogle Scholar
  5. Berrisford, P., B. J. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64, 2881–2898, https://doi.org/10.1175/JAS3984.1. CrossRefGoogle Scholar
  6. Buehler, T., C. C. Raible, and T. F. Stocker, 2011: The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A, 63, 174–187, https://doi.org/10.1111/j.1600-0870.2010.00492.x. CrossRefGoogle Scholar
  7. Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17, 1055–1068, https://doi.org/10.1175/1520-0442(2004)017 <1055:NAWCRS>2.0.CO;2.CrossRefGoogle Scholar
  8. Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613. CrossRefGoogle Scholar
  9. Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007: Atmospheric blocking: Space–time links to the NAO and PNA. Climate Dyn., 29, 713–725, https://doi.org/10.1007/s00382-007-0259-4. CrossRefGoogle Scholar
  10. Davini, P., C. Cagnazzo, R. Neale, and J. Tribbia, 2012a: Coupling between Greenland blocking and the North Atlantic oscillation pattern. Geophys. Res. Lett., 39, L14701, https://doi.org/10.1029/2012GL052315. CrossRefGoogle Scholar
  11. Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012b: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 6496–6508, https://doi.org/10.1175/JCLI-D-12-00032.1. CrossRefGoogle Scholar
  12. Diao, Y. N., J. P. Li, and D. H. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 4819–4839, https://doi.org/10.1175/JCLI3886.1. CrossRefGoogle Scholar
  13. Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic oscillation a breaking wave? J. Atmos. Sci., 61, 145–160, https://doi.org/10.1175/1520-0469(2004)061<0145: ITNAOA>2.0.CO;2.CrossRefGoogle Scholar
  14. Gong, T. T., and D. H. Luo, 2017: Ural Blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 2639–2654, https://doi.org/10.1175/JCLI-D-16-0548.1. CrossRefGoogle Scholar
  15. Gong, T. T., S. B. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 4937–949, http://doi.org/10.1175/JCLID-16-0180.1. CrossRefGoogle Scholar
  16. Haylock, M. R., N. Hofstra, A. M. G. K. Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008jd010201. CrossRefGoogle Scholar
  17. Hurrell, J. W., 1995: Decadal trends in the North Atlantic oscillations: Regional temperatures and precipitation. Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676. CrossRefGoogle Scholar
  18. Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, Eds., AGU Geophysical Monograph, Vol. 134, 1–35, https://doi.org/10.1029/134GM01. Google Scholar
  19. Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 3872–3889, https://doi.org/10.1175/2008JCLI2125.1. CrossRefGoogle Scholar
  20. Kenyon, J., and G. C. Hegerl, 2010: Influence of modes of climate variability on global precipitation extremes. J. Climate, 23, 6248–6262, https://doi.org/10.1175/2010JCLI3617.1. CrossRefGoogle Scholar
  21. Luo, B. H., D. H. Luo, L. X. Wu, L. H. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0. CrossRefGoogle Scholar
  22. Luo, D. H., 2005a: Why is the North Atlantic block more frequent and long-lived during the negative NAO phase? Geophys. Res. Lett., 32, L20804, https://doi.org/10.1029/2005GL022927. CrossRefGoogle Scholar
  23. Luo, D. H., 2005b: A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62(1), 5–21, https://doi.org/10.1175/1186.1. Google Scholar
  24. Luo, D. H., A. Lupo, and H. Wan, 2007: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic oscillations. J. Atmos. Sci., 64, 3–38, https://doi.org/10.1175/JAS3818.1. Google Scholar
  25. Luo, D. H., J. Cha, and S. B. Feldstein, 2012: Weather regime transitions and the interannual variability of the North Atlantic oscillation. Part I: A likely connection. J. Atmos. Sci., 69, 2329–2346, https://doi.org/10.1175/JAS-D-11-0289.1. Google Scholar
  26. Luo, D. H., J. Cha, L. H. Zhong, and A. G. Dai, 2014: A nonlinear multi-scale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140(683), 1785–1808, https://doi.org/10.1002/qj.2337. CrossRefGoogle Scholar
  27. Luo, D. H., Y. Yao, and A. G. Dai, 2015a: Decadal relationship between European blocking and the North Atlantic oscillation during 1978-2012. Part I: Atlantic conditions. J. Atmos. Sci., 72, 1152–1173, https://doi.org/10.1175/JAS-D-14-0039.1. CrossRefGoogle Scholar
  28. Luo, D. H., Y. Yao, and A. G. Dai, 2015b: Decadal relationship between European blocking and the North Atlantic oscillation during 1978–2012. Part II: A theoretical model study. J. Atmos. Sci., 72, 1174–1199, https://doi.org/10.1175/JAS-D-14-0040.1. CrossRefGoogle Scholar
  29. McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600, https://doi.org/10.1038/305593a0. CrossRefGoogle Scholar
  30. Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668–2682, https://doi.org/10.1175/JCLI-D-12-00030.1. CrossRefGoogle Scholar
  31. Nie, Y., Y. Zhang, G. Chen, X.-Q. Yang, and D. A. Burrows, 2014: Quantifying barotropic and baroclinic eddy feedbacks in the persistence of the Southern Annular Mode. Geophys. Res. Lett., 41, 8636–8644, https://doi.org/10.1002/2014 GL062210.CrossRefGoogle Scholar
  32. Nie, Y., Y. Zhang, G. Chen, and X. Q. Yang, 2016: Delineating the barotropic and baroclinic mechanisms in the midlatitude eddy-driven jet response to lower-tropospheric thermal forcing. J. Atmos. Sci., 73, 429–448, https://doi.org/10.1175/JASD-15-0090.1. CrossRefGoogle Scholar
  33. Ouzean, G., J. Cattiaux, H. Douville, A. Ribes, and D. Saint-Martin, 2011: European cold winter 2009-2010: How unusual in the instrumental record and how reproducible in the ARPEGE-climat model? Geophys. Res. Lett., 38, L11706, https://doi.org/10.1029/2011GL047667. Google Scholar
  34. Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743–755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.CrossRefGoogle Scholar
  35. Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012 gl052261.CrossRefGoogle Scholar
  36. Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic oscillation. J. Atmos. Sci., 64, 241–266, https://doi.org/10.1175/JAS3850.1. CrossRefGoogle Scholar
  37. Scaife, A. A., C. K. Folland, L. V. Alexander, A. Moberg, and J. R. Knight, 2008: European climate extremes and the North Atlantic oscillation. J. Climate, 21, 72–83, https://doi.org/10.1175/2007JCLI1631.1. CrossRefGoogle Scholar
  38. Scherrer, S., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233–249, https://doi.org/10.1002/joc.1250. CrossRefGoogle Scholar
  39. Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003gl019341. CrossRefGoogle Scholar
  40. Shabbar, A., J. P. Huang, and K. Higuchi, 2001: The relationship between the wintertime North Atlantic oscillation and blocking episodes in the North Atlantic. Int. J. Climatol., 21, 355–369, https://doi.org/10.1002/joc.612. CrossRefGoogle Scholar
  41. Sillmann, J., and M. Croci-Maspoli, 2009: Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys. Res. Lett., 36, L10702, https://doi.org/10.1029/2009GL038259. CrossRefGoogle Scholar
  42. Sillmann, J., M. Croci-Maspoli, M. Kallache, and R. W. Katz, 2011: Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J. Climate, 24, 5899–5913, https://doi.org/10.1175/2011JCLI4075.1. CrossRefGoogle Scholar
  43. Simolo, C., M. Brunetti, M. Maugeri, and T. Nanni, 2011: Evolution of extreme temperatures in a warming climate. Geophys. Res. Lett., 38, L16701, https://doi.org/10.1029/2011GL048437. CrossRefGoogle Scholar
  44. Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 2861–2876, https://doi.org/10.1175/2008JAS2632.1. CrossRefGoogle Scholar
  45. Sung, M. K., G. H. Lim, J. S. Kug, and S. I. An, 2011: A linkage between the North Atlantic Oscillation and its downstream development due to the existence of a blocking ridge. J. Geophys. Res., 116, D11107, https://doi.org/10.1029/2010 JD015006.CrossRefGoogle Scholar
  46. Thorncroft, C. D., B. J. Hoskins, and M. E. Mcintyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 17–55, https://doi.org/10.1002/qj.49711950903. CrossRefGoogle Scholar
  47. Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343–365, https://doi.org/10.3402/tellusa.v42i3.11882. CrossRefGoogle Scholar
  48. Tyrlis, E., and B. J. Hoskins, 2008a: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 1638–1652, https://doi.org/10.1175/2007JAS2337.1. CrossRefGoogle Scholar
  49. Tyrlis, E., and B. J. Hoskins, 2008b: The morphology of Northern Hemisphere blocking. J. Atmos. Sci., 65, 1653–1665, https://doi.org/10.1175/2007JAS2338.1. CrossRefGoogle Scholar
  50. Walker, G. T., and E.W. Bliss, 1932: World weather. V. Mem. Roy. Meteor. Soc., 4, 53–84.Google Scholar
  51. Wang, C. Z., H. L. Liu, and S. K. Lee, 2010: The recordbreaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161–168, https://doi.org/10.1002/asl.278. CrossRefGoogle Scholar
  52. Woollings, T., A. Hannachi, and B. Hoskins, 2010b: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856–868, https://doi.org/10.1002/qj.625. CrossRefGoogle Scholar
  53. Woollings, T., A. Hannachi, B. Hoskins, and A. Turner, 2010a: A regime view of the North Atlantic oscillation and its response to anthropogenic forcing. J. Climate, 23, 1291–1307, https://doi.org/10.1175/2009JCLI3087.1. CrossRefGoogle Scholar
  54. Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609–626, https://doi.org/10.1175/2007JAS2347.1. CrossRefGoogle Scholar
  55. Yao, Y., and D. H. Luo, 2014: Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Science China Earth Sciences, 57, 2628–2636, https://doi.org/10.1007/s11430-014-4949-6. CrossRefGoogle Scholar
  56. Yao, Y., and D. H. Luo, 2015: Do European blocking events precede North Atlantic Oscillation events? Adv. Atmos. Sci., 32(8), 1106–1118, https://doi.org/10.1007/s00376-015-4209-5. CrossRefGoogle Scholar
  57. Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30(10), 3549–3568, https://doi.org/10.1175/JCLID-16-0261.1. Google Scholar
  58. Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1: Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 1149–1165, https://doi.org/10.1029/94JD02747. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations