Skip to main content
Log in

Impact of Soil Moisture Uncertainty on Summertime Short-range Ensemble Forecasts

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To investigate the impact of soil moisture uncertainty on summertime short-range ensemble forecasts (SREFs), a fivemember SREF experiment with perturbed initial soil moisture (ISM) was performed over a northern China domain in summertime from July to August 2014. Five soil moisture analyses from three different operational/research centers were used as the ISM for the ensemble. The ISM perturbation produced notable ensemble spread in near-surface variables and atmospheric variables below 800 hPa, and produced skillful ensemble-mean 24-h accumulated precipitation (APCP24) forecasts that outperformed any single ensemble member. Compared with a second SREF experiment with mixed microphysics parameterization options, the ISM-perturbed ensemble produced comparable ensemble spread in APCP24 forecasts, and had better Brier scores and resolution in probabilistic APCP24 forecasts for 10-mm, 25-mm and 50-mm thresholds. The ISM-perturbed ensemble produced obviously larger ensemble spread in near-surface variables. It was, however, still under-dispersed, indicating that perturbing ISM alone may not be adequate in representing all the uncertainty at the near-surface level, indicating further SREF studies are needed to better represent the uncertainties in land surface processes and their coupling with the atmosphere.

摘要

为了研究土壤湿度不确定性对夏季短时集合预报的影响, 本研究通过扰动土壤湿度初值, 构建了一组5成员短时集合预报, 对我国北方区域进行了集合预报试验. 5个集合成员分别使用3个研究/业务中心的5套土壤湿度分析资料作为各自的土壤湿度初始场. 试验表明, 土壤湿度初值扰动在近地层至800 hPa大气中产生了较为明显的集合离散度. 24 h累计降水预报的集合平均预报优于每个集合成员. 通过与另一组混合微物理方案集合预报试验相比, 土壤扰动产生的24 h累计降水预报的集合离散度与混合微物理方案扰动相近但略低, 24 h累计降水概率预报的评分互有优劣. 尽管土壤湿度扰动在近地面大气产生了较为明显集合离散度, 但集合离散度仍然偏低, 说明单独扰动土壤湿度初值还不足以反应预报中近地面层的所有不确定性, 有必要进一步研究更加复杂精密的陆面扰动方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2007: Summer rainfall forecast spread in an ensemble initialized with different soil moisture analyses. Wea. Forecasting, 22, 299–314, https://doi.org/10.1175/WAF995.1.

    Article  Google Scholar 

  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern united states through a highresolution initialization of the surface state. Wea. Forecasting, 26, 785–807, https://doi.org/10.1175/2011WAF2222455.1.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    Google Scholar 

  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, https://doi.org/10.1029/2009GL037980.

    Article  Google Scholar 

  • Chen, S., and Coauthors, 2016: Precipitation spectra analysis over China with high-resolution measurements from optimallymerged satellite/gauge observations—Part II: Diurnal variability analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 2979–2988, https://doi.org/10.1109/JSTARS.2016.2529001.

    Article  Google Scholar 

  • Chen, X. L., X. S. Shen, and H. P. Chen, 2010: Analysis of the impact of land surface process on numerical weather predication of intensive summer rainfall over Huai River in 2007. Journal of Tropical Meteorology, 26, 667–679, https://doi.org/10.3969/j.issn.1004-4965.2010.06.004. (in Chinese)

    Google Scholar 

  • Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, and T.-H. Lin, 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan Area. J. Appl. Meteor. Climatol., 52, 570–587, https://doi.org/10.1175/JAMC-D-12-0109.1.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Duda, J. D., X. G. Wang, F. Y. Kong, and M. Xue, 2014: Using varied microphysics to account for uncertainty in warmseason QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 2198–2219, https://doi.org/10.1175/MWR-D-13-00297.1.

    Article  Google Scholar 

  • Ebert, E. E., 2001: Ability of a poor Man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461–2480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    Article  Google Scholar 

  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328–350, https://doi.org/10.1175/WAF843.1.

    Article  Google Scholar 

  • He, H. Z., and F. Q. Zhang, 2010: Diurnal variations of warmseason precipitation over northern China. Mon. Wea. Rev., 138, 1017–1025, https://doi.org/10.1175/2010MWR3356.1.

    Article  Google Scholar 

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Sch¨ar, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 5003–5020, https://doi.org/10.1175/2009JCLI2604.1.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.

    Article  Google Scholar 

  • Hou, D. C., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX’ 98 ensemble forecasts. Mon. Wea. Rev., 129, 73–91, https://doi.org/10.1175/1520-0493 (2001)129<0073:OVOTSE>2.0.CO;2.

    Article  Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.

    Article  Google Scholar 

  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, https://doi.org/10.1175/2009MWR2968.1.

    Article  Google Scholar 

  • Ma, Y. Z., C. G. Lu, and S. T. Gao, 2012: The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18–19 August 2010. Chinese Journal of Atmospheric Sciences, 36(4), 835–850, https://doi.org/10.3878/j.issn.1006-9895.2011.11159. (in Chinese)

    Google Scholar 

  • MacLeod, D. A., H. L. Cloke, F. Pappenberger, and A. Weisheimer, 2016: Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Quart. J. Roy. Meteor. Soc., 142, 79–90, https://doi.org/10.1002/qj.2631.

    Article  Google Scholar 

  • Meng, W. G., Y. X. Zhang, J. N. Li, G. F. Dai, H. R. Li, and Y. Y. Huang, 2012: Sensitivity of mesoscale convective systems and associated heavy rainfall to soil moisture over South China. Journal of Tropical Meteorology, 28, 633–645, https://doi.org/10.3969/j.issn.1004-4965.2012.05.003. (in Chinese)

    Google Scholar 

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064, https://doi.org/10.1175/JAS3534.1.

    Google Scholar 

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1.

    Article  Google Scholar 

  • Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon. Wea. Rev., 129, 638–663, https://doi.org/10.1175/1520-0493(2001)129<0638:QPFOTU>2.0.CO;2.

    Article  Google Scholar 

  • Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by including land surface model parameter uncertainty. Mon. Wea. Rev., 144, 1551–1569, https://doi.org/10.1175/MWR-D-15-0283.1.

    Article  Google Scholar 

  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Rev. Geophys., 39, 151–177, https://doi.org/10.1029/1999RG000072.

    Article  Google Scholar 

  • Quintanar, A. I., and R. Mahmood, 2012: Ensemble forecast spread induced by soil moisture changes over mid-south and neighbouring mid-western region of the USA. Tellus A, 64, 17156, https://doi.org/10.3402/tellusa.v64i0.17156.

    Article  Google Scholar 

  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381.

    Article  Google Scholar 

  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 1593–1604, https://doi.org/10.1175/1520-0477(1992)073<1593:NMCCBS>2.0.CO;2.

    Article  Google Scholar 

  • Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161, http://dx.doi.org/10.1016/j.earscirev.2010.02.004.

    Article  Google Scholar 

  • Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063–3075, https://doi.org/10.1002/2013JD020686.

    Google Scholar 

  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884, https://doi.org/10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    Article  Google Scholar 

  • Stensrud, D. J., and N. Yussouf, 2003: Short-range ensemble predictions of 2-m temperature and dewpoint temperature over New England. Mon. Wea. Rev., 131, 2510–2524, https://doi.org/10.1175/1520-0493(2003)131<2510:SEPOMT>2.0. CO;2.

    Article  Google Scholar 

  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 3174–3189, https://doi.org/10.1175/MWR3248.1.

    Article  Google Scholar 

  • Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL025252.

  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, https://doi.org/10.1029/2007GL030572.

    Article  Google Scholar 

  • Tennant, W., and S. Beare, 2014: New schemes to perturb seasurface temperature and soil moisture content in MOGREPS. Quart. J. Roy. Meteor. Soc., 140, 1150–1160, https://doi.org/10.1002/qj.2202.

    Article  Google Scholar 

  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land-surface model in the WRF model. Proceedings of 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, American Meteorological Society, 11–15.

    Google Scholar 

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1.

    Google Scholar 

  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 2954–2976, https://doi.org/10.1175/MWR2839.1.

    Article  Google Scholar 

  • Trier, S. B., F. Chen, K. W. Manning, M. A. LeMone, and C. A. Davis, 2008: Sensitivity of the PBL and precipitation in 12-Day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 2321–2343, https://doi.org/10.1175/2007 MWR2289.1.

    Article  Google Scholar 

  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2010: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the Central United States. Wea. Forecasting, 26, 3–25, https://doi.org/10.1175/2010WAF2222426.1.

    Article  Google Scholar 

  • Van Weverberg, K., N. P. M. van Lipzig, L. Delobbe, and D. Lauwaet, 2010: Sensitivity of quantitative precipitation forecast to soil moisture initialization and microphysics parametrization. Quart. J. Roy. Meteor. Soc., 136, 978–996, https://doi.org/10.1002/qj.611.

    Article  Google Scholar 

  • Wang, Y., A. Kann, M. Bellus, J. Pailleux, and C. Wittmann, 2010: A strategy for perturbing surface initial conditions in LAMEPS. Atmos. Sci. Lett., 11, 108–113, https://doi.org/10.1002/asl.260.

    Article  Google Scholar 

  • Zeng, X. M., B. Wang, Y. Zhang, S. Song, X. Huang, Y. Zheng, C. Chen, and G. Wang, 2014: Sensitivity of high-temperature weather to initial soil moisture: A case study using the WRF model. Atmos. Chem. Phys., 14, 9623–9639, https://doi.org/10.5194/acp-14-9623-2014.

    Article  Google Scholar 

  • Zhang, C. L., S. G. Miao, Q. C. Li, and F. Chen, 2007: Impacts of fine-resolution land use information of Beijing on a summer severe rainfall simulation. Chinese Journal of Geophysics, 50, 1373–1382, https://doi.org/10.3321/j.issn:0001-5733.2007.05.012. (in Chinese)

    Google Scholar 

  • Zhu, Z., and C. X. Shi, 2014: Simulation and evaluation of CLDAS and GLDAS soil moisture data in China. Science Technology and Engineering, 14, 138–144. (in Chinese)

    Google Scholar 

  • Zuo, Z. Y., and R. H. Zhang, 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Science in China Series D: Earth Sciences, 52, 269–278, https://doi.org/10.1007/s11430-009-0011-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangshan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Kong, F., Hu, XM. et al. Impact of Soil Moisture Uncertainty on Summertime Short-range Ensemble Forecasts. Adv. Atmos. Sci. 35, 839–852 (2018). https://doi.org/10.1007/s00376-017-7107-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7107-1

Key words

关键词

Navigation