Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 839–852 | Cite as

Impact of Soil Moisture Uncertainty on Summertime Short-range Ensemble Forecasts

  • Jiangshan Zhu
  • Fanyou Kong
  • Xiao-Ming Hu
  • Yan Guo
  • Lingkun Ran
  • Hengchi Lei
Original Paper

Abstract

To investigate the impact of soil moisture uncertainty on summertime short-range ensemble forecasts (SREFs), a fivemember SREF experiment with perturbed initial soil moisture (ISM) was performed over a northern China domain in summertime from July to August 2014. Five soil moisture analyses from three different operational/research centers were used as the ISM for the ensemble. The ISM perturbation produced notable ensemble spread in near-surface variables and atmospheric variables below 800 hPa, and produced skillful ensemble-mean 24-h accumulated precipitation (APCP24) forecasts that outperformed any single ensemble member. Compared with a second SREF experiment with mixed microphysics parameterization options, the ISM-perturbed ensemble produced comparable ensemble spread in APCP24 forecasts, and had better Brier scores and resolution in probabilistic APCP24 forecasts for 10-mm, 25-mm and 50-mm thresholds. The ISM-perturbed ensemble produced obviously larger ensemble spread in near-surface variables. It was, however, still under-dispersed, indicating that perturbing ISM alone may not be adequate in representing all the uncertainty at the near-surface level, indicating further SREF studies are needed to better represent the uncertainties in land surface processes and their coupling with the atmosphere.

Key words

ensemble forecast soil moisture perturbation probabilistic quantitative precipitation forecast. 

摘要

为了研究土壤湿度不确定性对夏季短时集合预报的影响, 本研究通过扰动土壤湿度初值, 构建了一组5成员短时集合预报, 对我国北方区域进行了集合预报试验. 5个集合成员分别使用3个研究/业务中心的5套土壤湿度分析资料作为各自的土壤湿度初始场. 试验表明, 土壤湿度初值扰动在近地层至800 hPa大气中产生了较为明显的集合离散度. 24 h累计降水预报的集合平均预报优于每个集合成员. 通过与另一组混合微物理方案集合预报试验相比, 土壤扰动产生的24 h累计降水预报的集合离散度与混合微物理方案扰动相近但略低, 24 h累计降水概率预报的评分互有优劣. 尽管土壤湿度扰动在近地面大气产生了较为明显集合离散度, 但集合离散度仍然偏低, 说明单独扰动土壤湿度初值还不足以反应预报中近地面层的所有不确定性, 有必要进一步研究更加复杂精密的陆面扰动方法.

关键词

集合预报 土壤湿度扰动 降水概率预报 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2007: Summer rainfall forecast spread in an ensemble initialized with different soil moisture analyses. Wea. Forecasting, 22, 299–314, https://doi.org/10.1175/WAF995.1. CrossRefGoogle Scholar
  2. Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern united states through a highresolution initialization of the surface state. Wea. Forecasting, 26, 785–807, https://doi.org/10.1175/2011WAF2222455.1. CrossRefGoogle Scholar
  3. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.Google Scholar
  4. Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, https://doi.org/10.1029/2009GL037980. CrossRefGoogle Scholar
  5. Chen, S., and Coauthors, 2016: Precipitation spectra analysis over China with high-resolution measurements from optimallymerged satellite/gauge observations—Part II: Diurnal variability analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 2979–2988, https://doi.org/10.1109/JSTARS.2016.2529001. CrossRefGoogle Scholar
  6. Chen, X. L., X. S. Shen, and H. P. Chen, 2010: Analysis of the impact of land surface process on numerical weather predication of intensive summer rainfall over Huai River in 2007. Journal of Tropical Meteorology, 26, 667–679, https://doi.org/10.3969/j.issn.1004-4965.2010.06.004. (in Chinese)Google Scholar
  7. Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, and T.-H. Lin, 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan Area. J. Appl. Meteor. Climatol., 52, 570–587, https://doi.org/10.1175/JAMC-D-12-0109.1. CrossRefGoogle Scholar
  8. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828. CrossRefGoogle Scholar
  9. Duda, J. D., X. G. Wang, F. Y. Kong, and M. Xue, 2014: Using varied microphysics to account for uncertainty in warmseason QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 2198–2219, https://doi.org/10.1175/MWR-D-13-00297.1. CrossRefGoogle Scholar
  10. Ebert, E. E., 2001: Ability of a poor Man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461–2480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.CrossRefGoogle Scholar
  11. Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328–350, https://doi.org/10.1175/WAF843.1. CrossRefGoogle Scholar
  12. He, H. Z., and F. Q. Zhang, 2010: Diurnal variations of warmseason precipitation over northern China. Mon. Wea. Rev., 138, 1017–1025, https://doi.org/10.1175/2010MWR3356.1. CrossRefGoogle Scholar
  13. Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Sch¨ar, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 5003–5020, https://doi.org/10.1175/2009JCLI2604.1. CrossRefGoogle Scholar
  14. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1. CrossRefGoogle Scholar
  15. Hou, D. C., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX’ 98 ensemble forecasts. Mon. Wea. Rev., 129, 73–91, https://doi.org/10.1175/1520-0493 (2001)129<0073:OVOTSE>2.0.CO;2.CrossRefGoogle Scholar
  16. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944. CrossRefGoogle Scholar
  17. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  18. Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217. CrossRefGoogle Scholar
  19. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, https://doi.org/10.1175/2009MWR2968.1. CrossRefGoogle Scholar
  20. Ma, Y. Z., C. G. Lu, and S. T. Gao, 2012: The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18–19 August 2010. Chinese Journal of Atmospheric Sciences, 36(4), 835–850, https://doi.org/10.3878/j.issn.1006-9895.2011.11159. (in Chinese)Google Scholar
  21. MacLeod, D. A., H. L. Cloke, F. Pappenberger, and A. Weisheimer, 2016: Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Quart. J. Roy. Meteor. Soc., 142, 79–90, https://doi.org/10.1002/qj.2631. CrossRefGoogle Scholar
  22. Meng, W. G., Y. X. Zhang, J. N. Li, G. F. Dai, H. R. Li, and Y. Y. Huang, 2012: Sensitivity of mesoscale convective systems and associated heavy rainfall to soil moisture over South China. Journal of Tropical Meteorology, 28, 633–645, https://doi.org/10.3969/j.issn.1004-4965.2012.05.003. (in Chinese)Google Scholar
  23. Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064, https://doi.org/10.1175/JAS3534.1. Google Scholar
  24. Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1. CrossRefGoogle Scholar
  25. Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon. Wea. Rev., 129, 638–663, https://doi.org/10.1175/1520-0493(2001)129<0638:QPFOTU>2.0.CO;2.CrossRefGoogle Scholar
  26. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by including land surface model parameter uncertainty. Mon. Wea. Rev., 144, 1551–1569, https://doi.org/10.1175/MWR-D-15-0283.1. CrossRefGoogle Scholar
  27. Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Rev. Geophys., 39, 151–177, https://doi.org/10.1029/1999RG000072. CrossRefGoogle Scholar
  28. Quintanar, A. I., and R. Mahmood, 2012: Ensemble forecast spread induced by soil moisture changes over mid-south and neighbouring mid-western region of the USA. Tellus A, 64, 17156, https://doi.org/10.3402/tellusa.v64i0.17156. CrossRefGoogle Scholar
  29. Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381. CrossRefGoogle Scholar
  30. Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 1593–1604, https://doi.org/10.1175/1520-0477(1992)073<1593:NMCCBS>2.0.CO;2.CrossRefGoogle Scholar
  31. Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161, http://dx.doi.org/10.1016/j.earscirev.2010.02.004. CrossRefGoogle Scholar
  32. Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063–3075, https://doi.org/10.1002/2013JD020686. Google Scholar
  33. Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884, https://doi.org/10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.CrossRefGoogle Scholar
  34. Stensrud, D. J., and N. Yussouf, 2003: Short-range ensemble predictions of 2-m temperature and dewpoint temperature over New England. Mon. Wea. Rev., 131, 2510–2524, https://doi.org/10.1175/1520-0493(2003)131<2510:SEPOMT>2.0. CO;2.CrossRefGoogle Scholar
  35. Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 3174–3189, https://doi.org/10.1175/MWR3248.1. CrossRefGoogle Scholar
  36. Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL025252.
  37. Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, https://doi.org/10.1029/2007GL030572. CrossRefGoogle Scholar
  38. Tennant, W., and S. Beare, 2014: New schemes to perturb seasurface temperature and soil moisture content in MOGREPS. Quart. J. Roy. Meteor. Soc., 140, 1150–1160, https://doi.org/10.1002/qj.2202. CrossRefGoogle Scholar
  39. Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land-surface model in the WRF model. Proceedings of 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, American Meteorological Society, 11–15.Google Scholar
  40. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1. Google Scholar
  41. Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 2954–2976, https://doi.org/10.1175/MWR2839.1. CrossRefGoogle Scholar
  42. Trier, S. B., F. Chen, K. W. Manning, M. A. LeMone, and C. A. Davis, 2008: Sensitivity of the PBL and precipitation in 12-Day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 2321–2343, https://doi.org/10.1175/2007 MWR2289.1.CrossRefGoogle Scholar
  43. Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2010: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the Central United States. Wea. Forecasting, 26, 3–25, https://doi.org/10.1175/2010WAF2222426.1. CrossRefGoogle Scholar
  44. Van Weverberg, K., N. P. M. van Lipzig, L. Delobbe, and D. Lauwaet, 2010: Sensitivity of quantitative precipitation forecast to soil moisture initialization and microphysics parametrization. Quart. J. Roy. Meteor. Soc., 136, 978–996, https://doi.org/10.1002/qj.611. CrossRefGoogle Scholar
  45. Wang, Y., A. Kann, M. Bellus, J. Pailleux, and C. Wittmann, 2010: A strategy for perturbing surface initial conditions in LAMEPS. Atmos. Sci. Lett., 11, 108–113, https://doi.org/10.1002/asl.260. CrossRefGoogle Scholar
  46. Zeng, X. M., B. Wang, Y. Zhang, S. Song, X. Huang, Y. Zheng, C. Chen, and G. Wang, 2014: Sensitivity of high-temperature weather to initial soil moisture: A case study using the WRF model. Atmos. Chem. Phys., 14, 9623–9639, https://doi.org/10.5194/acp-14-9623-2014. CrossRefGoogle Scholar
  47. Zhang, C. L., S. G. Miao, Q. C. Li, and F. Chen, 2007: Impacts of fine-resolution land use information of Beijing on a summer severe rainfall simulation. Chinese Journal of Geophysics, 50, 1373–1382, https://doi.org/10.3321/j.issn:0001-5733.2007.05.012. (in Chinese)Google Scholar
  48. Zhu, Z., and C. X. Shi, 2014: Simulation and evaluation of CLDAS and GLDAS soil moisture data in China. Science Technology and Engineering, 14, 138–144. (in Chinese)Google Scholar
  49. Zuo, Z. Y., and R. H. Zhang, 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Science in China Series D: Earth Sciences, 52, 269–278, https://doi.org/10.1007/s11430-009-0011-5. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiangshan Zhu
    • 1
  • Fanyou Kong
    • 2
  • Xiao-Ming Hu
    • 2
  • Yan Guo
    • 3
  • Lingkun Ran
    • 1
  • Hengchi Lei
    • 1
  1. 1.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Center for Analysis and Prediction of StormsUniversity of OklahomaNormanUSA
  3. 3.State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina

Personalised recommendations