Skip to main content
Log in

Effects of Sea-Surface Waves and Ocean Spray on Air–Sea Momentum Fluxes

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

摘要

本文主要研究了在不同风速和波龄下, 海表面波浪和海洋飞沫对海-气边界层的影响. 首先, 通过在海表面总界面应力中引入波致应力和飞沫应力, 修正了海-气边界层动量模型. 在考虑涡流粘性系数随海表面高度线性变化的前提下, 得到了模型的解析解. 波致应力的计算通过海浪方向谱和海浪增长函数获得, 飞沫应力的计算则是通过参数化描述海洋飞沫液滴与风速剪切相互作用的物理过程. 另外, 计算了在不同海浪成长状态和固定海表面高度处不同风速下, 近海表面风廓线和海表面拖曳系数的值. 同时, 风廓线与拖曳系数的值也与之前没有引进波浪与飞沫作用的模型的解析解进行了对比. 结果表明: 在中低海表面风速下, 海表面波浪对近海风廓线和海表面拖曳系数有影响, 低波龄海浪较高波龄海浪, 对风廓线与拖曳系数的影响更为明显, 而飞沫的影响基本忽略. 然而在高风速下, 海浪大量破碎, 风从破碎波脊吹落的飞沫液滴, 对海-气边界层的动量通量有很强的影响, 进而波龄对动量通量的影响被忽略. 大量飞沫液滴使近海飞沫生成层的湍应力增加, 使得大气向海洋中输送的动能减小, 进而拖曳系数减小. 最后, 拖曳系数的理论值与实验室风波槽所得数据和外海观测数据的对比表明, 不同波龄的海表面波浪和海洋飞沫对海-气边界层动量通量有很重要的影响, 进一步证明模型的准确性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 2175–2184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.

    Article  Google Scholar 

  • Andreas, E. L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 1429–1440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

    Article  Google Scholar 

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027.

    Article  Google Scholar 

  • Donelan, M. A., B. K. Haus, N., Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    Article  Google Scholar 

  • Gao, Z. Q., Q. Wang, and M. Y. Zhou, 2009: Wave-dependence of friction velocity, roughness length and drag coefficient over coastal and open water surfaces by using three databases. Adv. Atmos. Sci., 26, 887–894, https://doi.org/10.1007/s00376-009-8130-7.

    Article  Google Scholar 

  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 2408–2429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    Article  Google Scholar 

  • Hanley, K. E., and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 2646–2660, https://doi.org/10.1175/2007JAS2562.1.

    Article  Google Scholar 

  • Hara, T., and S. E. Belcher, 2004: Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 2345–2358, https://doi.org/10.112275/JPO2633.1.

    Article  Google Scholar 

  • Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci., 23, 688–693, https://doi.org/10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2.

    Article  Google Scholar 

  • He, H. L., and D. K. Chen, 2011: Effects of surface wave breaking on the oceanic boundary layer. Geogphysical Research Letters, 38, L07604.

    Google Scholar 

  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 1707–1709, https://doi.org/10.1126/science.1136466.

    Article  Google Scholar 

  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, https://doi.org/10.1029/2005JC002970.

    Article  Google Scholar 

  • Kudryavtsev, V. N., and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383–410, https://doi.org/10.1007/s10546-001-9624-2.

    Article  Google Scholar 

  • Lewis, D. M., and S. E. Belcher, 2004: Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans, 37, 313–351, https://doi.org/10.1016/j.dynatmoce.2003.11.001.

    Article  Google Scholar 

  • Li, S., M. Li, G. P. Gerbi, and J. B. Song, 2013: Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean. J. Geophys. Res. Ocean, 118, 5173–5187.

    Article  Google Scholar 

  • Liu, B., C. L. Guan, and L. Xie, 2012: The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. J. Geophys. Res., 117, C00J22, https://doi.org/100.1007/s11802-016-2655-z10.1029/2011JC007786.

    Article  Google Scholar 

  • Lucas, C., and C. G. Soares, 2015: On the modelling of swell spectra. Ocean Engineering, 108, 749–759, https://doi.org/10.1016/j.oceaneng.2015.08.017.

    Article  Google Scholar 

  • Makin, V. K., 2008: On the possible impact of a following-swell on the atmospheric boundary layer. Bound.-Layer Meteor., 129, 469–478, https://doi.org/10.1007/s10546-008-9320-z.

    Article  Google Scholar 

  • Makin, V. K., V. N. Kudryavtsev, and C. Mastenbroek, 1995: Drag of the sea surface. Bound.-Layer Meteor., 73, 159–182, https://doi.org/10.1007/BF00708935.

    Article  Google Scholar 

  • Mueller, J. A., and F. Veron, 2009: A sea state-dependent spume generation function. J. Phys. Oceanogr., 39, 2363–2372, https://doi.org/10.1175/2009JPO4113.1.

    Article  Google Scholar 

  • Polnikov, V. G., 2011: Integrated model for a wave boundary layer. Marine Science, 1, 10–21, https://doi.org/10.5923/j.ms.20110101.02.

    Article  Google Scholar 

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283, https://doi.org/10.1038/nature01481.

    Article  Google Scholar 

  • Rutgersson, A., A. S. Smedman, and U. Högström, 2001: Use of conventional stability parameters during swell. J. Geophys. Res., 106, 27 117–27 134, https://doi.org/10.1029/2000JC000543.

    Article  Google Scholar 

  • Semedo, A., Ø. Saetra, A. Rutgersson, K. K. Kahma, and H. Pettersson, 2009: Wave-induced wind in the marine boundary layer. J. Atmos. Sci., 66, 2256–2271, https://doi.org/10.1175/2009JAS3018.1.

    Article  Google Scholar 

  • Song, J. B., W. Fan, S. Li., and M. Zhou, 2015: Impact of surface waves on the steady near-surface wind profiles over the ocean. Bound.-Layer Meteor., 155, C00J21, https://doi.org/10.1007/s13131-016-0959-610.1007/s10546-014-9983-6.

    Article  Google Scholar 

  • Song, J. B., 2009: The effects of rand om surface waves on the steady Ekman current solutions. Deep-Sea Res., 56(5), 659–671.

    Article  Google Scholar 

  • Troitskaya, Y. I., D. A. Sergeev, A. A. Kand aurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov, 2012: Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J. Geophys. Res., 117, 50–60, https://doi.org/10.1029/2011/JC007778.

    Article  Google Scholar 

  • Xiao, J. B., and A. T. Taylor, 2002: On equilibrium profiles of suspended particles. Bound.-Layer Meteor., 105, 471–482, https://doi.org/10.1023/A:1020395323626.

    Article  Google Scholar 

  • Wang, J. J., J. B. Song, Y. S. Huang, and C. H. Fan, 2013: Application of the Hilbert–Huang transform to the estimation of air-sea turbulent fluxes. Bound.-Layer Meteor., 147(3), 553–568, https://doi.org/10.1007/s10546-012-9784-8.

    Article  Google Scholar 

  • Zhang, T., J. B. Song, S. Li, and L. G. Yang, 2016: The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean. Acta Oceanologica Sinica, 35, 79–85, https://doi.org/10.1007/s13131-016-0950-6.

    Google Scholar 

  • Zhao, D. L., and L. Xie, 2010: A practical bi-parameter formula of gas transfer velocity depending on wave states. Journal of Oceanography, 66, 663–671, https://doi.org/10.1007/s10872-010-0054-4.

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was supported by the National Natural Science Foundation of China (Grant No. 41576013) and the National Key Research and Development Program of China (Grant No. 2016YFC1401404). The research also was supported by the National Natural Science Foundation of China (Grant No. 41476021 and 41621064) and the Indo-Pacific Ocean Environment Variation and Air–Sea Interaction project (GASI-IPOVAI-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Song, J. Effects of Sea-Surface Waves and Ocean Spray on Air–Sea Momentum Fluxes. Adv. Atmos. Sci. 35, 469–478 (2018). https://doi.org/10.1007/s00376-017-7101-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7101-7

Key words

关键词

Navigation