Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 6, pp 682–688 | Cite as

Impact of the Spring SST Gradient between the Tropical Indian Ocean and Western Pacific on Landfalling Tropical Cyclone Frequency in China

  • Lei Wang
  • Guanghua Chen
Original Paper

Abstract

The present study identifies a significant influence of the sea surface temperature gradient (SSTG) between the tropical Indian Ocean (TIO; 15°S–15°N, 40°–90°E) and the western Pacific warm pool (WWP; 0°–15°N, 125°–155°E) in boreal spring on tropical cyclone (TC) landfall frequency in mainland China in boreal summer. During the period 1979–2015, a positive spring SSTG induces a zonal inter-basin circulation anomaly with lower-level convergence, mid-tropospheric ascendance and upper-level divergence over the west-central TIO, and the opposite situation over the WWP, which produces lower-level anomalous easterlies and upper-level anomalous westerlies between the TIO and WWP. This zonal circulation anomaly further warms the west-central TIO by driving warm water westward and cools the WWP by inducing local upwelling, which facilitates the persistence of the anomaly until the summer. Consequently, lower-level negative vorticity, strong vertical wind shear and lower-level anticyclonic anomalies prevail over most of the western North Pacific (WNP), which decreases the TC genesis frequency. Meanwhile, there is an anomalous mid-tropospheric anticyclone over the main WNP TC genesis region, meaning a westerly anomaly dominates over coastal regions of mainland China, which is unfavorable for steering TCs to make landfall in mainland China during summer. This implies that the spring SSTG may act as a potential indicator for TC landfall frequency in mainland China.

Key words

tropical cyclone landfall sea surface temperature gradient air–sea interaction 

摘 要

本文揭示了春季热带印度洋和西太平洋暖池的海表温度梯度(SSTG)对夏季登陆中国大陆热带气旋频次的显著影响. 1979-2015年, 春季正SSTG诱导了一个纬向跨洋环流异常. 此异常表现为: 低层辐合风, 中层上升气流和高层辐散风出现在热带印度洋中西部上空, 而相反的环流情况出现在西太平洋暖池上空, 这些环流场造成热带印度洋和西太平洋暖池间出现了低层东风异常和高空西风异常. 并且, 这个纬向环流异常可通过驱动暖海水向西移动来维持热带印度洋东西部的暖状态, 而通过引发本地冷海水上翻来维持西太平洋暖池的冷状态, 从而有利于在夏季维持此纬向环流异常. 这使得夏季西北太平洋大部地区出现了低层负涡度, 强垂直风切变和低层反气旋异常, 减少了热带气旋的生成频次. 同时, 夏季西北太平洋热带气旋的主要生成区域上空出现了一个中层反气旋异常, 导致中层西风异常控制了中国大陆沿海地区, 不利于引导热带气旋登陆中国大陆. 上述分析意味着春季SSTG可以作为登陆中国大陆热带气旋频次的潜在预报因子.

关键词

热带气旋登陆 海表温度梯度 海-气相互作用 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful comments. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41461164005, 41375065 and 41475074).

References

  1. Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374.CrossRefGoogle Scholar
  2. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, http://dx.doi. org/10.1002/qj.828.CrossRefGoogle Scholar
  3. Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315–322, http://doi.org/10.1175/2010JCLI3890.1.CrossRefGoogle Scholar
  4. Emanuel, K., 2003: Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75–104, http://doi.org/10.1146/annurev.earth.31.100901.141259.CrossRefGoogle Scholar
  5. Goh, A. Z. C., and J. C. L. Chan, 2010: An improved statistical scheme for the prediction of tropical cyclones making land fall in South China.Wea. Forecasting, 25, 587–593, http://doi. org/10.1175/2009WAF2222305.1.CrossRefGoogle Scholar
  6. Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.Google Scholar
  7. Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767–1776, https://doi.org/10.1175/1520-0442 (2004)017<1767:ICISTT>2.0.CO;2.CrossRefGoogle Scholar
  8. Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteoro. Soc., 91, 363–376, http://doi.org/10.1175/2009BAMS2755.1.CrossRefGoogle Scholar
  9. Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understand ing Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 1767–1781, http://doi.org/10.1175/BAMS-88-11-1767.CrossRefGoogle Scholar
  10. Li, R. C. Y., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño-Southern Oscillation cycle. J. Climate, 25, 5864–5878, http://doi.org/10.1175/JCLI-D-11-00430.1.CrossRefGoogle Scholar
  11. Li, R. C. Y., and W. Zhou, 2014: Interdecadal change in South China Sea tropical cyclone frequency in association with zonal sea surface temperature gradient. J. Climate, 27, 5468–5480, http://doi.org/10.1175/JCLI-D-13-00744.1.CrossRefGoogle Scholar
  12. Liu, K. S., and J. C. L. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making land fall along the South China coast. Mon. Wea. Rev., 131, 1650–1662, http://doi.org/10.1175//2554.1.CrossRefGoogle Scholar
  13. Mei, W., S.-P. Xie, M. Zhao, and Y. Q. Wang, 2015: Forced and internal variability of tropical cyclone track density in the western North Pacific. J. Climate, 28, 143–167, http://doi.org/10.1175/JCLI-D-14-00164.1.CrossRefGoogle Scholar
  14. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, http://doi.org/10.1029/2002 JD002670.CrossRefGoogle Scholar
  15. Tao, L., L. G. Wu, Y. Q. Wang, and J. L. Yang, 2012: Influence of tropical Indian Ocean warming and ENSO on tropical cyclone activity over the western North Pacific. J. Meteor. Soc. Japan, 90, 127–144, http://doi.org/10.2151/jmsj.2012-107.CrossRefGoogle Scholar
  16. Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, http://doi.org/10.1029/2007GL029683.CrossRefGoogle Scholar
  17. Wang, L., and R. G. Wu, 2012: In-phase transition from the winter monsoon to the summer monsoon over East Asia: Role of the Indian Ocean. J. Geophys. Res., 117, D11112, http://doi.org/10.1029/2012JD017509.Google Scholar
  18. Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone land falling activity in the western North Pacific. J. Climate, 17, 1419–1428, https://doi.org/10.1175/1520-0442(2004)017 <1419:IOENOE>2.0.CO;2.CrossRefGoogle Scholar
  19. Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indowestern Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, https://doi.org/10.1175/2008 JCLI2544.1.CrossRefGoogle Scholar
  20. Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432, http://doi.org/10.1007/s00376-015-5192-6.CrossRefGoogle Scholar
  21. Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res Lett., 34, L02708, http://doi.org/10.1029/2006GL028571.Google Scholar
  22. Zhan, R. F., Y. Q. Wang, and X. T. Lei, 2011a: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509–521, https://doi.org/10.1175/2010JCLI3808.1.CrossRefGoogle Scholar
  23. Zhan, R. F., Y. Q. Wang, and C.-C. Wu, 2011b: Impact of SSTA in the east Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 6227–6242, https://doi.org/10.1175/JCLI-D-10-05014.1.CrossRefGoogle Scholar
  24. Zhan, R. F., Y. Q. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Tropical Cyclone Research and Review, 1, 307–324, https://doi.org/10.6057/2012TCRR03.07.Google Scholar
  25. Zhan, R. F., Y. Q. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 2408–2415, https://doi.org/10.1175/JCLI-D-12-00798.1.CrossRefGoogle Scholar
  26. Zhao, J. W., R. F. Zhan, Y. Q. Wang, and L. Tao, 2016: Intensified interannual relationship between tropical cyclone genesis frequency over the Northwest Pacific and the SST gradient between the Southwest Pacific and the western Pacific warm pool since the mid-1970s. J. Climate, 29, 3811–3830, https://doi.org/10.1175/JCLI-D-15-0729.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations