Skip to main content
Log in

Variability of atlantic meridional overturning circulation in FGOALS-g2

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The variability of Atlantic Meridional Overturning Circulation (AMOC) in the pre-industrial control experiment of the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) was investigated using the model outputs with the most stable state in a 512-yr time window from the total 1500-yr period of the experiment. The period of AMOC in FGOALS-g2 is double peaked at 20 and 32 years according to the power spectrum, and 22 years according to an auto-correlation analysis, which shows very obvious decadal variability. Like many other coupled climate models, the decadal variability of AMOC in FGOALS-g2 is closely related to the convection that occurs in the Labrador Sea region. Deep convection in the Labrador Sea in FGOALS-g2 leads the AMOC maximum by 3–4 years. The contributions of thermal and haline effects to the variability of the convection in three different regions [the Labrador, Irminger and Greenland-Iceland-Norwegian (GIN) Seas] were analyzed for FGOALS-g2. The variability of convection in the Labrador and Irminger Seas is thermally dominant, while that in the colder GIN Seas can be mainly attributed to salinity changes due to the lower thermal expansion. By comparing the simulation results from FGOALS-g2 and 11 other models, it was found that AMOC variability can be attributed to salinity changes for longer periods (longer than 35 years) and to temperature changes for shorter periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, D., P. Rhines, and S. Häkkinen, 2005: Formation and pathways of North Atlantic deep water in a coupled ice-ocean model of the Arctic-North Atlantic Oceans. Climate Dyn., 25, 497–516.

    Article  Google Scholar 

  • Bentsen, M., H. Drange, T. Furevik, and T. Zhou, 2004: Simulated variability of the Atlantic meridional overturning circulation. Climate Dyn., 22(6), 701–720, doi: 10.1007/s00382-004-0397-x.

    Google Scholar 

  • Bentsen, M., and Coauthors, 2012: The Norwegian earth system model, NorESM1-M — Part 1: Description and basic evaluation. Geoscientific Model Development Discussion, 5, 2843–2931.

    Article  Google Scholar 

  • Blaker, A. T., Joël J-M Hirschi, B. Sinha, B. de Cuevas, S. Alderson, A. Coward, and G. Madec, 2012: Large near-inertial oscillations of the Atlantic meridional overturning circulation. Ocean Modelling, 42, 50–56.

    Article  Google Scholar 

  • Bryden, H. L., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation & Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 455–474.

    Chapter  Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31(6), 1413–1426.

    Article  Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32(1), 240–264.

    Article  Google Scholar 

  • Craig, A. P., and Coauthors, 2005: CPL6, The new extensible, high performance parallel coupler for the community climate system. International Journal of High Performance Computing Application, 19, 308–327.

    Google Scholar 

  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317(5840), 935–938, doi: 10.1126/science.1141304.

    Article  Google Scholar 

  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J. Climate, 21, 5524–5544, doi: 10.1175/2008jcli2019.1.

    Article  Google Scholar 

  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, doi: 10.1175/jcli-d-11-00463.1.

    Google Scholar 

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109(C12), C12003, doi: 10.1029/2004jc002378.

    Article  Google Scholar 

  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled oceanatmosphere model. J. Climate, 6(11), 1993–2011.

    Article  Google Scholar 

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16(9), 661–676, doi: 10.1007/s003820000075.

    Article  Google Scholar 

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19(5), 643–674, doi: 10.1175/jcli3629.1.

    Article  Google Scholar 

  • Delworth, T. L., and Coauthors, 2008: The potential for abrupt change in the Atlantic Meridional Overturning Circulation. Abrupt Climate Change. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. U.S. Geological Survey, Reston, VA, 258–359.

    Google Scholar 

  • Doney, S. C., K. Lindsay, I. Fung, and J. John, 2006: Natural variability in a stable, 1000-Yr global coupled climatecarbon cycle simulation. J. Climate, 19(13), 3033–3054, doi: 10.1175/jcli3783.1.

    Article  Google Scholar 

  • Dong, B., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J. Climate, 18(8), 1117–1135, doi: 10.1175/jcli3328.1.

    Article  Google Scholar 

  • Döös, K., and D. J. Webb, 1994: The deacon cell and the other meridional cells of the southern ocean. J. Phys. Oceanogr., 24(2), 429–442.

    Article  Google Scholar 

  • Dufour, C. O., J. L. Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the meridional overturning to the southern annular mode. J. Climate, 25, 6958–6974.

    Article  Google Scholar 

  • Eldevik, T., J. E. Ø. Nilsen, D. Iovino, K. A. Olsson, A. B. Sandø, and H. Drange, 2009: Observed sources and variability of Nordic seas overflow. Nature Geoscience, 2(6), 406–410.

    Article  Google Scholar 

  • Escudier, R., J. Mignot, and D. Swingedouw, 2011: A 20-yr coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Climate Dyn., 40, 619–636.

    Article  Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24(19), 4973–4991, doi: 10.1175/2011jcli4083.1.

    Article  Google Scholar 

  • Gordon, A. L., 2009: Bottom Water Formation, in Ocean Currents. J. H. Steele et al., Eds., Elsevier, London, 263–269.

  • Gordon, C., and Coauthors, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. Climate Dyn., 16(2), 147–168, doi: 10.1007/s003820050010.

    Article  Google Scholar 

  • Hansen, B., W. R. Turrell, and S. Østerhus, 2001: Decreasing over-flow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature, 411, 927–930.

    Article  Google Scholar 

  • Hofmann, M., and S. Rahmstorf, 2009: On the stability of the Atlantic meridional overturning circulation. PNAS, 106(49), 20584–20589.

    Article  Google Scholar 

  • Huang, B., Y. Xue, A. Kumar, and D. Behringer, 2012: AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Climate Dyn., 38(3), 513–525, doi: 10.1007/s00382-011-1035-z.

    Article  Google Scholar 

  • Huang, W. Y., and Coauthors, 2013: Understanding the different responses of Atlantic meridional overturning circulation (AMOC) under the three representative concentration pathways (RCPs) in FGOALS-g2. Climatic and Environmental Research, in press. (in Chinese)

    Google Scholar 

  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24(10), 2429–2449, doi: 10.1175/2010jcli3997.1.

    Article  Google Scholar 

  • Johnson, H. L., and D. P. Marshall, 2002a: A theory for the surface atlantic response to thermohaline variability. J. Phys. Oceanogr., 32(4), 1121–1132.

    Article  Google Scholar 

  • Johnson, H. L., and D. P. Marshall, 2002b: Localization of abrupt change in the North Atlantic thermohaline circulation. Geophys. Res. Lett., 29(6), 1083, doi: 10.1029/2001gl014140.

    Article  Google Scholar 

  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34(7), 1702–1722.

    Article  Google Scholar 

  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18(19), 4013–4031, doi: 10.1175/jcli3462.1.

    Article  Google Scholar 

  • Kanzow, T., and Coauthors, 2009: Basinwide integrated volume transports in an eddy-filled ocean. J. Phys. Oceanogr., 39(12), 3091–3110, doi: 10.1175/2009jpo4185.1.

    Article  Google Scholar 

  • Kanzow, T., and Coauthors, 2010: Seasonal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J. Climate, 23(21), 5678–5698, doi: 10.1175/2010jcli3389.1.

    Article  Google Scholar 

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32(20), L20708, doi: 10.1029/2005gl024233.

    Article  Google Scholar 

  • Krebs, U., and A. Timmermann, 2007: Fast advective recovery of the Atlantic meridional overturning circulation after a Heinrich event. Paleoceanography, 22(1), PA1220, doi: 10.1029/2005pa001259.

    Article  Google Scholar 

  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    Google Scholar 

  • Kwon, Y.-O., and C. Frankignoul, 2012: Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Climate Dyn., 38(5), 859–876, doi: 10.1007/s00382-011-1040-2.

    Article  Google Scholar 

  • Latif, M., and N. S. Keenlyside, 2011: A perspective on decadal climate variability and predictability. Deep Sea Research Part II: Topical Studies in Oceanography, 58, 1880–1894, doi: 10.1016/j.dsr2.2010.10.066.

    Article  Google Scholar 

  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 1605–1614.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013a: The flexible global oceanatmosphere-land system model: Version g2: FGOALS-g2. Adv. Atmos. Sci., 30(3), 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013b: Development and evaluation of grid-point atmospheric model of IAP LASG, Version 2.0 (GAMIL 2.0). Adv. Atmos. Sci., 30(3), 855–867, doi: 10.1007/s00376-013-2157-5.

    Article  Google Scholar 

  • Liu, H., P. Lin, Y. Yu, and X. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3), 318–329, doi: 10.1007/s13351-012-0305-y.

    Article  Google Scholar 

  • Liu, J., 2010: Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model. Science China: Earth Science, 53(6), 911–918, doi: 10.1007/s11430-010-0051-x.

    Article  Google Scholar 

  • Lohmann, K., H. Drange, and M. Bentsen, 2009: Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Climate Dyn., 32, 273–285.

    Article  Google Scholar 

  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 6573–6581, doi: 10.1175/2011jcli4002.1.

    Article  Google Scholar 

  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 1–64, doi: 10.1029/98rg02739.

    Article  Google Scholar 

  • Medhaug, I., and T. Furevik, 2011: North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface temperature and ocean overturning circulation. Ocean Science, 7(3), 389–404, doi: 10.5194/os-7-389-2011.

    Article  Google Scholar 

  • Medhaug, I., H. Langehaug, T. Eldevik, T. Furevik, and M. Bentsen, 2012: Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation. Climate Dyn., 39, 77–93, doi: 10.1007/s00382-011-1124-z.

    Article  Google Scholar 

  • Mignot, J., and C. Frankignoul, 2010: Local and remote impacts of a tropical Atlantic salinity anomaly. Climate Dyn., 35(7), 1133–1147, doi: 10.1007/s00382-009-0621-9.

    Article  Google Scholar 

  • Oleson, K. W. and Coauthors, 2004: Technical description of the community land model (CLM). NCAR/TN-461+STR, 174 pp.

    Google Scholar 

  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3(10), 688–694.

    Article  Google Scholar 

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–1451.

    Article  Google Scholar 

  • Phipps, S. J., L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd, 2011: The CSIRO Mk3L climate system model version 1.0—Part 1: Description and evaluation. Geoscience Model Development Discussion, 4(1), 219–287, doi: 10.5194/gmdd-4-219-2011.

    Article  Google Scholar 

  • Rennermalm, A. K., E. F. Wood, A. J. Weaver, M. Eby, and S. J. Déry, 2007: Relative sensitivity of the Atlantic meridional overturning circulation to river discharge into Hudson Bay and the Arctic Ocean. J. Geophys. Res., 112(G4), G04S48, doi: 10.1029/2006jg000330.

    Google Scholar 

  • Schott, F. A., J. P. McCreary Jr., and G. C. Johnson, 2004: Shallow overturning circulations of the tropical-subtropical oceans. Earth’s Climate: The Ocean-Atmosphere Interaction, Wang et al., Eds., AGU, 261–304.

    Chapter  Google Scholar 

  • Sen Gupta, A., L. C. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2012: Climate drift in the CMIP3 models. J. Climate, doi: 10.1175/jcli-d-11-00312.1.

    Google Scholar 

  • Steffen, E. L., and E. A. D’Asaro, 2002: Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32(2), 475–492.

    Article  Google Scholar 

  • Swingedouw, D., P. Braconnot, P. Delecluse, E. Guilyardi, and O. Marti, 2007: The impact of global freshwater forcing on the thermohaline circulation: Adjustment of North Atlantic convection sites in a CGCM. Climate Dyn., 28(2), 291–305, doi: 10.1007/s00382-006-0171-3.

    Google Scholar 

  • Timmermann, A., M. Latif, R. Voss, and A. Grötzner, 1998: Northern hemispheric interdecadal variability: A coupled air-sea mode. J. Climate, 11(8), 1906–1931, doi: 10.1175/1520-0442-11.8.1906.

    Article  Google Scholar 

  • Timmermann, A., S-I. An, U. Krebs, H. Goosse, 2005: ENSO Suppression due to weakening of the North Atlantic thermohaline circulation. J. Climate, 18, 3122–3139.

    Article  Google Scholar 

  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899–4919.

    Article  Google Scholar 

  • Treguier, A. M., M. H. England, S. R. Rintoul, G. Madec, J. Le Sommer, and J. M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic circumpolar current. Ocean Science, 3(4), 491–507, doi: 10.5194/os-3-491-2007.

    Article  Google Scholar 

  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17, 259–276.

    Article  Google Scholar 

  • Van Aken, H., 2007: Ocean Thermohaline Circulation. Springer Verlag, New York, NY, 326 pp.

    Google Scholar 

  • Volodin, E., N. Diansky, R. Purini, and C. Transerici, 2009: On the mechanism of natural variability of Atlantic meridional overturning circulation in climate model INMCM3.0. Presentation at EGU General Assembly 2009, Vienna, Austria.

    Google Scholar 

  • Wang, B., H. Wan, Z. Ji, X. Zhang, R. Yu, Y. Yu, and H. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China (A), 47, 4–21, doi: 10.1360/04za0001.

    Article  Google Scholar 

  • Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 37(6), L06602, doi: 10.1029/2010gl042372.

    Google Scholar 

  • Wunsch, C., and D. Stammer, 1998: Satellite altimetry, the marine geoid, and the oceanic general circulation. Annual Review of Earth and Planetary Sciences, 26, 219–253.

    Article  Google Scholar 

  • Yashayaev, I., M. Bersch, and H. M. van Aken, 2007: Spreading of the Labrador Sea water to the Irminger and Iceland basins. Geophys. Res. Lett., 34(10), L10602, doi: 10.1029/2006gl028999.

    Article  Google Scholar 

  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2011: A model of Atlantic heat content and sea level change in response to thermohaline forcing. J. Climate, 24(21), 5619–5632, doi: 10.1175/jcli-d-10-05007.1.

    Article  Google Scholar 

  • Zhang, R., 2007: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys. Res. Lett., 34(12), L12713, doi: 10.1029/2007gl030225.

    Article  Google Scholar 

  • Zhang, R., 2010a: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37(16), L16703, doi: 10.1029/2010gl044474.

    Google Scholar 

  • Zhang, R., 2010b: Northward intensification of anthropogenically forced changes in the Atlantic meridional overturning circulation (AMOC). Geophys. Res. Lett., 37(24), L24603, doi: 10.1029/2010gl045054.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wang, B., Li, L. et al. Variability of atlantic meridional overturning circulation in FGOALS-g2. Adv. Atmos. Sci. 31, 95–109 (2014). https://doi.org/10.1007/s00376-013-2155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2155-7

Key words

Navigation