Field-aged biochar decreased N2O emissions by reducing autotrophic nitrification in a sandy loam soil

Abstract

A 15N tracing incubation study was carried out using a sandy loam soil without (control) and with field-aged biochar (biochar) to investigate the mechanisms underlying the effects of field-aged biochar on nitrous oxide (N2O) emissions. During the incubation, carried out at 40%, 60%, and 80% water-filled pore space (WFPS), cumulative N2O emission decreased from 24.13–26.40 μg N kg−1 in the control soil to 18.27–23.94 μg N kg−1 in the biochar soil, with a reduction of 9.3–24.3%. The contribution of autotrophic nitrification to total N2O production was 81.8–87.6% in the control soil under 40–80% WFPS, which was significantly reduced by field-aged biochar to 67.1–78.6%. Under 60% WFPS, the gross rates of autotrophic nitrification and gross mineralization were reduced from 11.95 and 4.43 μg N g−1 d−1, respectively, in the control soil to 7.32 and 0.60 μg N g−1 d−1, respectively, in the biochar soil. The field-aged biochar increased the NH4+ immobilization rate by 440%, primarily by immobilizing NH4+ into the recalcitrant organic N pool. Both the turnover rate of NH4+ mineralization-immobilization and the ratio of nitrification to NH4+ immobilization were reduced under biochar amendment, consequently lowering the supply of NH4+ for nitrifiers. In addition, compared with the control soil, the gross rate of NH4+ adsorption was significantly higher in the biochar soil. Taken together, our results suggest that field-aged biochar contributes to mitigating N2O emissions, primarily by decreasing the autotrophic nitrification rate through a reduced NH4+ supply due to increased mineral N immobilization and adsorption and lowered organic N mineralization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andersen AJ, Petersen SO (2009) Effects of C and N availability and soil-water potential interactions on N2O evolution and PLFA composition. Soil Biol Biochem 41:1726–1733

    CAS  Article  Google Scholar 

  2. Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    CAS  Article  Google Scholar 

  3. Bruun EW, Müller-Stöver D, Ambus P, Hauggaard-Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62:581–589

    CAS  Article  Google Scholar 

  4. Butterbach-Bahl K, Baggs E M, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil. Trans R Soc Lond B 368:20130122

  5. Cao Y, Zhong M, Gong H, Lu G (2013) Determining 15N abundance in ammonium, nitrate and nitrite in soil by measuring nitrous oxide produced. Acta Pedol Sin 50:113−119 (in Chinese)

  6. Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185

    CAS  Article  Google Scholar 

  7. Case SDC, McNamara NP, Reay DS, Whitaker J (2012) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil - the role of soil aeration. Soil Biol Biochem 51:125–134

    CAS  Article  Google Scholar 

  8. Cavigelli MA, Robertson GP (2000) The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81:1402–1414

    Article  Google Scholar 

  9. Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    CAS  Article  Google Scholar 

  11. Chen J, Chen D, Xu Q, Fuhrmann JJ, Li L, Pan G, Li Y, Qin H, Liang C, Sun X (2018) Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol Fertil Soils 55:185–197

    Article  CAS  Google Scholar 

  12. Chen Z, Ding W, Xu Y, Müller C, Rütting T, Yu H, Fan J, Zhang J, Zhu T (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75

    CAS  Article  Google Scholar 

  13. Chinese Soil Taxonomy Research Group (2001) Chinese soil taxonomy. Science Press, Beijing-New York

    Google Scholar 

  14. Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    CAS  Article  Google Scholar 

  15. Cox GM, Gibbons JM, Wood ATA, Craigon J, Ramsden SJ, Crout NMJ (2006) Towards the systematic simplification of mechanistic models. Ecol Model 198:240–246

    Article  Google Scholar 

  16. Dempster DN, Jones DL, Murphy DV (2012) Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol Biochem 48:47–50

    CAS  Article  Google Scholar 

  17. Duan P, Zhang X, Zhang Q, Wu Z, Xiong Z (2018) Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Sci Total Environ 642:1303–1310

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Fan C, Duan P, Zhang X, Shen H, Chen M, Xiong Z (2020) Mechanisms underlying the mitigation of both N2O and NO emissions with field-aged biochar in an Anthrosol. Geoderma 364:114178

    CAS  Article  Google Scholar 

  19. Fungo B, Lehmann J, Kalbitz K, Thionģo M, Tenywa M, Okeyo I, Neufeldt H (2019) Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. Biol Fertil Soils 55:135–148

    CAS  Article  Google Scholar 

  20. Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal 8:660–674

    CAS  PubMed  Article  Google Scholar 

  21. Hansen V, Müller-Stöver D, Ahrenfeldt J, Holm JK, Henriksen UB, Hauggaard-Nielsen H (2015) Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 72:300–308

    CAS  Article  Google Scholar 

  22. Huygens D, Rütting T, Boeckx P, Van Cleemput O, Godoy R, Müller C (2007) Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biol Biochem 39:2448–2458

    CAS  Article  Google Scholar 

  23. IPCC (2014) IPCC 2014: climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (Eds), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland 151 pp

  24. Kamau S, Karanja NK, Ayuke FO, Lehmann J (2019) Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol Fertil Soils 55:661–673

    CAS  Article  Google Scholar 

  25. Kammann CI, Schmidt HP, Messerschmidt N, Linsel S, Steffens D, Muller C, Koyro HW, Conte P, Joseph S (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep 5:11080

    PubMed  PubMed Central  Article  Google Scholar 

  26. Liao X, Niu Y, Liu D, Chen Z, He T, Luo J, Lindsey S, Ding W (2020) Four-year continuous residual effects of biochar application to a sandy loam soil on crop yield and N2O and NO emissions under maize-wheat rotation. Agric Ecosyst Environ 302:107109

    CAS  Article  Google Scholar 

  27. Lin Y, Ding W, Liu D, He T, Yoo G, Yuan J, Chen Z, Fan J (2017) Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biol Biochem 113:89–98

    CAS  Article  Google Scholar 

  28. Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, Di H (2019) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil 445:39–53

    CAS  Article  Google Scholar 

  29. Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z, Liu G, Ambus P, Xie Z (2018) How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426:211–225

    CAS  Article  Google Scholar 

  30. Lu R (2000) Methods of soil and agro-chemical analysis. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  31. Lu W, Ding W, Zhang J, Li Y, Luo J, Bolan N, Xie Z (2014) Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biol Biochem 76:12–21

    CAS  Article  Google Scholar 

  32. Luo X, Chen L, Zheng H, Chang J, Wang H, Wang Z, Xing B (2016) Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma 282:120–128

    CAS  Article  Google Scholar 

  33. Mia S, Singh B, Dijkstra FA (2017) Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. GCB Bioenergy 9:1196–1206

    CAS  Article  Google Scholar 

  34. Mirsky SB, Lanyon LE, Needelman BA (2008) Evaluating soil management using particulate and chemically labile soil organic matter fractions. Soil Sci Soc Am J 72:180–185

    CAS  Article  Google Scholar 

  35. Müller C, Rütting T, Abbasi MK, Laughlin RJ, Kammann C, Clough TJ, Sherlock RR, Kattge J, Jäger HJ, Watson CJ, Stevens RJ (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem 41:1996–2001

    Article  CAS  Google Scholar 

  36. Müller C, Rütting T, Kattge J, Laughlin RJ, Stevens RJ (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biol Biochem 39:715–726

    Article  CAS  Google Scholar 

  37. Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632

    Article  CAS  Google Scholar 

  38. Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27

    CAS  Article  Google Scholar 

  39. Niu Y, Chen Z, Müller C, Zaman MM, Kim D, Yu H, Ding W (2017) Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize-wheat rotation in the North China Plain. Atmos Environ 170:58–70

    CAS  Article  Google Scholar 

  40. Niu Y, Luo J, Liu D, Müller C, Zaman M, Lindsey S, Ding W (2018) Effect of biochar and nitrapyrin on nitrous oxide and nitric oxide emissions from a sandy loam soil cropped to maize. Biol Fertil Soils 54:645–658

    CAS  Article  Google Scholar 

  41. Prinn RG, Weiss RF, Arduini J, Arnold T, DeWitt HL, Fraser PJ, Ganesan AL, Gasore J, Harth CM, Hermansen O, Kim J, Krummel PB, Li S, Loh ZM, Lunder CR, Maione M, Manning AJ, Miller BR, Mitrevski B, Mühle J, O'Doherty S, Park S, Reimann S, Rigby M, Saito T, Salameh PK, Schmidt R, Simmonds PG, Steele LP, Vollmer MK, Wang RH, Yao B, Yokouchi Y, Young D, Zhou L (2018) History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst Sci Data 10:985–1018

    Article  Google Scholar 

  42. Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9:e86388

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Rütting T, Clough TJ, Müller C, Lieffering M, Newton PCD (2010) Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture. Glob Change Biol 16:2530–2542

    Article  Google Scholar 

  44. Rütting T, Müller C (2007) 15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils. Soil Biol Biochem 39:2351–2361

    Article  CAS  Google Scholar 

  45. Sánchez-García M, Roig A, Sánchez-Monedero MA, Cayuela ML (2014) Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Front Environ Sci 2:1–10

    Google Scholar 

  46. Schimel JP, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  Google Scholar 

  47. Song Y, Li Y, Cai Y, Fu S, Luo Y, Wang H, Liang C, Lin Z, Hu S, Li Y, Chang SX (2019) Biochar decreases soil N2O emissions in Moso bamboo plantations through decreasing labile N concentrations, N-cycling enzyme activities and nitrification/denitrification rates. Geoderma 348:135–145

    CAS  Article  Google Scholar 

  48. Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Envir Sci 2:179–193

    Google Scholar 

  49. Teutscherova N, Vazquez E, Masaguer A, Navas M, Scow KM, Schmidt R, Benito M (2017) Comparison of lime- and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil. Biol Fertil Soils 53:811–821

    CAS  Article  Google Scholar 

  50. Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos T R Soc B 367:1157–1168

    CAS  Article  Google Scholar 

  51. van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2009) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  52. Wan YJ, Ju XT, Ingwersen J, Schwarz U, Stange CF, Zhang FS, Streck T (2009) Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil. Soil Sci Soc Am J 73:102–112

    CAS  Article  Google Scholar 

  53. Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523

    CAS  Article  Google Scholar 

  54. Wang Z, Zong H, Zheng H, Liu G, Chen L, Xing B (2015) Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138:576–583

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Weldon S, Rasse DP, Budai A, Tomic O, Dörsch P (2019) The effect of a biochar temperature series on denitrification: which biochar properties matter? Soil Biol Biochem 135:173–183

    CAS  Article  Google Scholar 

  56. Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46:1027–1037

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Xie Y, Yang C, Ma E, Tan H, Zhu T, Müller C (2020) Biochar stimulates NH4+ turnover while decreasing NO3 production and N2O emissions in soils under long-term vegetable cultivation. Sci Total Environ 737:140266

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    CAS  Article  Google Scholar 

  59. Yu L, Homyak PM, Kang X, Brookes PC, Ye Y, Lin Y, Muhammad A, Xu J (2019) Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment. Biol Fertil Soils 56:169–183

    Article  CAS  Google Scholar 

  60. Zhang A, Cheng G, Hussain Q, Zhang M, Feng H, Dyck M, Sun B, Zhao Y, Chen H, Chen J, Wang X (2017) Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China. Field Crop Res 205:45–54

    Article  Google Scholar 

  61. Zhang JB, Müller C, Cai ZC (2015) Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol Biochem 84:199–209

    CAS  Article  Google Scholar 

  62. Zhou F, Shang Z, Ciais P, Tao S, Piao S, Raymond P, He C, Li B, Wang R, Wang X, Peng S, Zeng Z, Chen H, Ying N, Hou X, Xu P (2014) A new high-resolution N2O emission inventory for China in 2008. Environ Sci Technol 48:8538–8547

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the National Natural Science Foundation of China (31561143011, 41730753), IAEA Coordinated Research Project (RAS 45083), and the Frontier Project from the Institute of Soil Science, Chinese Academy of Sciences (No. ISSASIP1607). The study was carried out in collaboration with the German Science Foundation Research Unit DASIM (Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales) (DFG FOR 2337).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weixin Ding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Müller, C., Jansen-Willems, A. et al. Field-aged biochar decreased N2O emissions by reducing autotrophic nitrification in a sandy loam soil. Biol Fertil Soils (2021). https://doi.org/10.1007/s00374-021-01542-8

Download citation

Keywords

  • Biochar
  • Gross N rates
  • N2O