Chemical communication in springtails: a review of facts and perspectives

Abstract

The present knowledge on chemical communication in springtails (Collembola), one of the two most abundant invertebrate groups living in soil and environments in tight contact with soil (e.g. plant litter, moss), is reviewed here. Chemical communication in an environment where light is absent or dimmed becomes a prominent driver of trophic and non-trophic interactions between soil organisms at a time when better knowledge on the biological determinants of soil communities is required. Like insects and many other arthropods, collembolan individuals of the same population intercommunicate by pheromones, which allow them signalling a risk or clustering in places favourable for feeding, mating, moulting and ovipositing. Olfaction is also used to select preferred food and mates. Researches so far conducted allowed discerning common trends in the role and chemical composition of odour blends used by Collembola. However, much more needs to be done before reaching straightforward conclusions about chemical communication issues at evolutionary and community levels, making this domain even more rewarding.

This is a preview of subscription content, log in to check access.

Change history

  • 22 April 2020

    The author regrets at the beginning of the sub-section "Sex pheromones" (page 428 of the published version) within the section "The use of pheromones, allomones and kairomones by Collembola"

References

  1. Altner H, Thies G (1976) The postantennal organ: a specialized unicellular sensory input to the protocerebrum in apterygotan insects (Collembola). Cell Tissue Res 167:97–110

    CAS  PubMed  Google Scholar 

  2. Anderson JM (1975) The enigma of soil animal species diversity. In: Vanek J (ed) Progress in soil zoology. Academia, Prague, pp 51–58

    Google Scholar 

  3. Anderson JM (1978) Competition between two unrelated species of soil Cryptostigmata (Acari) in experimental microcosms. J Anim Ecol 47:787–803

    Google Scholar 

  4. Auclerc A, Ponge JF, Barot S, Dubs F (2009) Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biol Biochem 41:1596–1604

    CAS  Google Scholar 

  5. Auclerc A, Libourel PA, Salmon S, Bels V, Ponge JF (2010) Assessment of movement patterns in Folsomia candida (Hexapoda: Collembola) in the presence of food. Soil Biol Biochem 42:657–659

    CAS  Google Scholar 

  6. Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Google Scholar 

  7. Bahrndorff S, De Jonge N, Hansen JK, Lauritzen JMS, Spanggaard LH, Sorensen MH, Yde M, Nielsen JL (2018) Diversity and metabolic potential of the microbiota associated with a soil arthropod. Sci Report 8:2491

    Google Scholar 

  8. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  9. Baker TC (2002) Mechanism for saltational shifts in pheromone communication systems. Proc Natl Acad Sci U S A 99:13368–13370

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME et al (eds) Handbook of soil science. CRC Press, Boca Raton, pp B25–B84

    Google Scholar 

  11. Barata EN, Mustaparta H, Pickett JA, Wadhams LJ, Araujo J (2002) Encoding of host and non-host plant odours by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae). J Comp Physiol A 188:121–133

    CAS  Google Scholar 

  12. Bardgett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–374

    PubMed  Google Scholar 

  13. Bardgett RD, Van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    CAS  PubMed  Google Scholar 

  14. Barot S, Gignoux J (2004) Mechanisms promoting plant coexistence: can all the proposed processes be reconciled? Oikos 106:185–192

    Google Scholar 

  15. Barra JA, Christiansen K (1975) Experimental study of aggregations during the development of Pseudosinella impediens (Collembola, Entomobryidae). Pedobiologia 15:343–347

    Google Scholar 

  16. Beck JJ, Alborn HT, Block AK, Christensen SA, Hunter CT, Rering CC, Seidl-Adams I, Stuhl CJ, Torto B, Tumlinson JH (2018) Interactions among plants, insects, and microbes: elucidation of inter-organismal chemical communications in agricultural ecology. J Agric Food Chem 66:6663–6674

    CAS  PubMed  Google Scholar 

  17. Bell WJ, Tobin TR (1982) Chemo-orientation. Biol Rev Cambridge Phil Soc 57:219–260

    Google Scholar 

  18. Bengtsson G, Erlandsson A, Rundgren S (1988) Fungal odour attracts soil Collembola. Soil Biol Biochem 20:25–30

    Google Scholar 

  19. Bengtsson G, Hedlund K, Rundgren S (1991) Selective odor perception in the soil Collembola Onychiurus armatus. J Chem Ecol 17:2113–2125

    CAS  PubMed  Google Scholar 

  20. Bengtsson G, Hedlund K, Rundgren S (1994) Food- and density-dependent dispersal: evidence from a soil collembolan. J Anim Ecol 63:513–520

    Google Scholar 

  21. Benoit JB, Elnitsky MA, Schulte GG, Lee RE Jr, Denlinger DL (2009) Antarctic collembolans use chemical signals to promote aggregation and egg laying. J Insect Behav 22:121–133

    Google Scholar 

  22. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    CAS  PubMed  Google Scholar 

  23. Betsch-Pinot MC (1977) Les parades sexuelles primitives chez les Collemboles Symphypléones. Rev Écol Biol Sol 14:15–19

    Google Scholar 

  24. Biedermann PHW, De Fine Licht HK, Rohlfs M (2019) Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol 38:1–6

    Google Scholar 

  25. Bitzer C, Brasse G, Dettner K, Schulz S (2004) Benzoic acid derivatives in a hypogastrurid collembolan: temperature-dependent formation and biological significance as deterrents. J Chem Ecol 30:1591–1602

    CAS  PubMed  Google Scholar 

  26. Blomquist GJ, Figueroa-Teran R, Aw M, Song MM, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712

    CAS  PubMed  Google Scholar 

  27. Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208

    Google Scholar 

  28. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Google Scholar 

  29. Boulay J, Aubernon C, Ruxton GD, Hédouin V, Deneubourg JL, Charabidzé V (2019) Mixed-species aggregations in arthropods. Insect Sci 26:2–19

    PubMed  Google Scholar 

  30. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    CAS  PubMed  Google Scholar 

  31. Brückner A, Schuster R, Smit T, Pollierer MM, Schäffler I, Heethoff M (2018) Track the snaff: olfactory cues shape foraging behaviour of decomposing soil mites (Oribatida). Pedobiologia 66:74–80

    Google Scholar 

  32. Callaway RM (2002) The detection of neighbors by plants. Trends Ecol Evol 17:104–105

    Google Scholar 

  33. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    CAS  PubMed  Google Scholar 

  34. Chauvat M, Perez G, Ponge JF (2014) Foraging patterns of soil springtails are impacted by food resources. Appl Soil Ecol 82:72–77

    Google Scholar 

  35. Chernova NM, Potapov MB, Savenkova YY, Bokova AI (2010) Ecological significance of parthenogenesis in Collembola. Entomol Rev 90:23–38

    Google Scholar 

  36. Christiansen K (1967) Competition between collembolan species in culture jars. Rev Écol Biol Sol 4:439–462

    Google Scholar 

  37. Christiansen K, Doyle M, Kahlert M, Gobaleza D (1992) Interspecific interactions between collembolan populations in culture. Pedobiologia 36:274–286

    Google Scholar 

  38. Combès A, Ndoye I, Bance C, Bruzaud J, Djediat C, Dupont J, Nay B, Prado S (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS One 7:e47313

    PubMed  PubMed Central  Google Scholar 

  39. Corey EA, Bobkov Y, Ukhanov K, Ache BW (2013) Ionotropic crustacean olfactory receptors. PLoS One 8:e60551

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Croft JR, Liu T, Camiletti AL, Simon AF, Thompson GJ (2017) Sexual response of male Drosophila to honey bee queen mandibular pheromone: implications for generic studies of social insects. J Comp Physiol A 203:143–149

    CAS  Google Scholar 

  41. Culver D (1974) Competition between Collembola in a patchy environment. Rev Écol Biol Sol 11:533–540

    Google Scholar 

  42. De Bruyn M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897

    Google Scholar 

  43. De Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Bracht Jørgensen H, Brady MV, Christensen S, De Ruiter PC, D’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, Van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci U S A 110:14296−14301

    PubMed Central  Google Scholar 

  44. DeAngelis KM (2016) Chemical communication connects soil food webs. Soil Biol Biochem 102:48–51

    CAS  Google Scholar 

  45. Dettner K, Scheuerlein A, Fabian P, Schulz S, Francke W (1996) Chemical defense of giant springtail Tetrodotonphora bielanensis (Waga) (Insecta: Collembola). J Chem Ecol 22:1051–1074

    CAS  PubMed  Google Scholar 

  46. Dickschat JS, Reichenbach H, Wagner-Dobler I, Schulz S (2005) Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur J Org Chem 2005:4141–4153

    Google Scholar 

  47. Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509

    CAS  PubMed  Google Scholar 

  48. Dugdale JS (1997) Pheromone and morphology-based phylogenies in New Zealand tortricid moths. In: Carde RT, Minks AK (eds) Insect pheromone research: new directions. Chapman and Hall, London, pp 463–472

    Google Scholar 

  49. Eijsackers H (1978) Side effects of the herbicide 2,4,5-T affecting mobility and mortality of the springtail Onychiurus quadriocellatus Gisin (Collembola). Z Angew Entomol 86:349–372

    CAS  Google Scholar 

  50. Ferlian O, Klarner B, Langeneckert AE, Scheu S (2015) Trophic niche differentiation and utilisation of food resources in collembolans based on complementary analyses of fatty acids and stable isotopes. Soil Biol Biochem 82:28–35

    CAS  Google Scholar 

  51. Futuyma DJ, Mitter C (1996) Insect-plant interactions: the evolution of component communities. Phil Trans R Soc London B 351:1361–1366

    Google Scholar 

  52. Gerson U (1969) Moss-arthropod associations. Bryologist 72:495–500

    Google Scholar 

  53. Giribet G, Edgecombe GD, Carpenter JM, D’Haese C, Wheeler WC (2004) Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects. Org Divers Evol 4:319–340

    Google Scholar 

  54. Glasgow JP (1939) A population study of subterranean soil Collembola. J Anim Ecol 8:323–353

    Google Scholar 

  55. Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227

    CAS  PubMed  Google Scholar 

  56. Greenfield MD (1981) Moth sex pheromones: an evolutionary perspective. Florida Entomol 64:4–17

    Google Scholar 

  57. Greenway AR, Griffiths DC, Lloyd SL (1978) Response of Myzus persicae to components of aphid extracts and to carboxylic acids. Entomol Exp Appl 24:369–374

    CAS  Google Scholar 

  58. Hale WG (1966) A population study of moorland Collembola. Pedobiologia 6:65–99

    Google Scholar 

  59. Hayashi M, Nakamura Y, Higashi K, Kato H, Kishida F, Kaneko H (1999) A quantitative structure-activity relationship study of the skin irritation potential of phenols. Toxicol in Vitro 13:915–922

    CAS  PubMed  Google Scholar 

  60. Heděnec P, Radochová P, Nováková A, Kaneda S, Frouz J (2013) Grazing preference and utilization of soil fungi by Folsomia candida (Isotomidae: Collembola). Eur J Soil Biol 55:66–70

    Google Scholar 

  61. Hedlund K, Ek H, Gunnarsson T, Svegborn C (1990) Mate choice and male competition in Orchesella cincta (Collembola). Experientia 46:524–526

    Google Scholar 

  62. Hedlund K, Bengtsson G, Rundgren S (1995) Fungal odour discrimination in two sympatric species of fungivorous collembolans. Funct Ecol 9:869–875

    Google Scholar 

  63. Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, Oxford

    Google Scholar 

  64. Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172

    CAS  Google Scholar 

  65. Huber I (1978) Prey attraction and immobilization by allomone from nymphs of Womersia strandtmanni (Acarina: Trombiculidae). Acarologia 20:112–115

    Google Scholar 

  66. Ims RA, Leinaas HP, Coulson S (2004) Spatial and temporal variation in patch occupancy and population density in a model system of an arctic Collembola species assemblage. Oikos 105:89–100

    Google Scholar 

  67. Ishii S, Kuwahara Y (1967) An aggregation pheromone of the German cockroach Blatella germanica L. (Orthoptera: Blatellidae). I. Site of the pheromone production. Appl Entomol Zool 2:203–217

    CAS  Google Scholar 

  68. Joosse ENG (1970) The formation and biological significance of aggregations in the distribution of Collembola. Netherl J Zool 20:299–314

    Google Scholar 

  69. Joosse ENG (1971) Ecological aspects of aggregation in Collembola. Rev Écol Biol Sol 8:91–97

    Google Scholar 

  70. Joosse ENG, Koelman TACM (1979) Evidence for the presence of aggregation pheromones in Onychiurus armatus (Collembola), a pest insect in sugar beet. Entomol Exp Appl 26:197–201

    Google Scholar 

  71. Joosse ENG, Verhoef HA (1974) On the aggregational habits of surface dwelling Collembola. Pedobiologia 14:245–249

    Google Scholar 

  72. Jørgensen HB, Johansson T, Canbäck B, Hedlund K, Tunlid A (2005) Selective foraging of fungi by collembolans in soil. Biol Lett 1:243–246

    PubMed  PubMed Central  Google Scholar 

  73. Jousset A, Scheu S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 2008:714–719

    Google Scholar 

  74. Kaissling KE (2014) Pheromone reception in insects: the example of silk moths. In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press, Boca Raton, FL, pp 99–146

    Google Scholar 

  75. Karlson P, Luscher M (1959) Pheromones: new term for a class of biologically active substances. Nature 183:55–56

    CAS  PubMed  Google Scholar 

  76. Karuhize GR (1971) The structure of the postantennal organ in Onychiurus sp. (Insecta: Collembola) and its connection to the central nervous system. Z Zellforsch Mikroskop Anatomie 118:263–282

    CAS  Google Scholar 

  77. Keil TA (1999) Morphology and development of the peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer Nature, Stuttgart, pp 5–47

    Google Scholar 

  78. Kielty JP, Allen-Williams LJ, Underwood N, Eastwood EA (1996) Behavioral responses of three species of ground beetle (Coleoptera: Carabidae) to olfactory cues associated with prey and habitat. J Insect Behav 9:237–250

    Google Scholar 

  79. Knight CB, Angel RA (1967) A preliminary study of the dietary requirements of Tomocerus (Collembola). Am Midl Nat 77:510–517

    Google Scholar 

  80. Kollmann M, Huetteroth W, Schachtner J (2011) Brain organization in Collembola (springtails). Arthropod Struct Develop 40:304–316

    Google Scholar 

  81. Kozlowski MW, Shi AX (2006) Ritual behaviors associated with spermatophore transfer in Deuterosminthurus bicinctus (Collembola: Bourletiellidae). J Ethol 24:103–109

    Google Scholar 

  82. Krool S, Bauer T (1987) Reproduction, development, pheromone secretion in Heteromurus nitidus Templeton 1835 (Collembola, Entomobryidae). Rev Écol Biol Sol 24:187–195

    Google Scholar 

  83. Kuenen DJ, Nooteboom HP (1963) Olfactory orientation in some land-isopods (Oniscoidea, Crustacea). Entomol Exp Appl 6:133–142

    Google Scholar 

  84. Laland KN, Boogert NJ (2010) Niche construction, co-evolution and biodiversity. Ecol Econ 69:731–736

    Google Scholar 

  85. Lavelle P, Spain A, Blouin M, Brown G, Decaëns T, Grimaldi M, Jiménez JJ, McKey D, Mathieu J, Velasquez E, Zangerlé A (2016) Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 181:91–109

    CAS  Google Scholar 

  86. Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596

    CAS  PubMed  Google Scholar 

  87. Leal WS (1997) Evolution of sex pheromone communication in plant-feeding scarab beetles. In: Carde RT, Minks AK (eds) Insect pheromone research: new directions. Chapman and Hall, London, pp 505–513

    Google Scholar 

  88. Lei H, Chiu HY, Hildebrand JG (2013) Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures. J Comp Physiol A 199:997–1014

    CAS  Google Scholar 

  89. Leigh EG Jr, Rowell TE (1995) The evolution of mutualism and other forms of harmony at various levels of biological organization. Ecologie 26:131–158

    Google Scholar 

  90. Leinaas HP (1983) Synchronized moulting controlled by communication in group-living Collembola. Science 219:193–195

    CAS  PubMed  Google Scholar 

  91. Leonard MA, Bradbury PC (1984) Aggregative behaviour in Folsomia candida (Collembola: Isotomidae), with respect to previous conditioning. Pedobiologia 26:369–372

    Google Scholar 

  92. Liu J, Wu DH (2017) Chemical attraction of conspecifics in Folsomia candida (Collembola). J Insect Behav 30:331–341

    Google Scholar 

  93. Lyford WH (1975) Overland migration of Collembola (Hypogastrura nivicola Fitch) colonies. Am Midl Nat 94:205–209

    Google Scholar 

  94. Malcicka M, Ruther J, Ellers J (2017) De novo synthesis of linoleic acid in multiple Collembola species. J Chem Ecol 43:911–919

    CAS  PubMed  Google Scholar 

  95. Malcicka M, Visser B, Ellers J (2018) An evolutionary perspective on linoleic acid synthesis in animals. Evol Biol 45:15–26

    PubMed  Google Scholar 

  96. Manica A, McMeechan FK, Foster WA (2001) An aggregation pheromone in the intertidal collembolan Anurida maritima. Entomol Exp Appl 99:393–395

    Google Scholar 

  97. Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to the ‘enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95

    Google Scholar 

  98. Marseille F, Disnar JR, Guillet B, Noack Y (1999) n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France. Eur J Soil Sci 50:433–431

    CAS  Google Scholar 

  99. Mendelson TC, Martin MD, Flaxman S (2014) Mutation-order divergence by sexual selection: diversification of sexual signals in similar environments as a first step in speciation. Ecol Lett 17:1053–1066

    PubMed  Google Scholar 

  100. Mertens J, Bourgoignie R (1977) Aggregation pheromone in Hypogastrura viatica (Collembola). Behav Ecol Sociobiol 2:41–48

    Google Scholar 

  101. Mertens J, Blancquaert JP, Bougoignie R (1979) Aggregation pheromone in Orchesella cincta (Collembola). Rev Écol Biol Sol 16:441–447

    CAS  Google Scholar 

  102. Messer C, Dettner K, Schulz S, Francke W (1999) Phenolic compounds in Neanura muscorum (Collembola, Neanuridae) and the role of 1,3-dimethoxybenzene as an alarm substance. Pedobiologia 43:174–182

    CAS  Google Scholar 

  103. Michelozzi M, Raschi A, Tognetti R, Tosi L (1997) Eco-ethological analysis of the interaction between isoprene and the behaviour of Collembola. Pedobiologia 41:210–214

    Google Scholar 

  104. Missbach C, Dweck HKM, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E (2014) Evolution of insect olfactory receptors. eLIFE 3:e02115

    PubMed  PubMed Central  Google Scholar 

  105. Negri I (2004) Spatial distribution of Collembola in presence and absence of a predator. Pedobiologia 48:585–588

    Google Scholar 

  106. Nijholt WW (1980) Pine oil and oleic acid delay and reduce attacks on logs by ambrosia beetles (Coleoptera: Scolytidae). Can Entomol 112:199–204

    Google Scholar 

  107. Nilsson E, Bengtsson G (2004a) Death odour changes movement pattern of a Collembola. Oikos 104:509–517

    Google Scholar 

  108. Nilsson E, Bengtsson G (2004b) Endogenous free fatty acids repel and attract Collembola. J Chem Ecol 30:1431–1443

    CAS  PubMed  Google Scholar 

  109. O’Connell RJ (1986) Chemical communication in invertebrates. Experientia 42:232–241

    PubMed  Google Scholar 

  110. Perez G, Aubert M, Decaëns T, Trap J, Chauvat M (2013) Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biol Biochem 67:245–254

    CAS  Google Scholar 

  111. Peters NK, Verma DPS (1990) Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol Plant-Microb Interact 3:4–8

    CAS  Google Scholar 

  112. Pfander I, Zettel J (2004) Chemical communication in Ceratophysella sigillata (Collembola: Hypogastruridae): intraspecific reaction to alarm substances. Pedobiologia 48:575–580

    Google Scholar 

  113. Ponge JF (1973) Application de l’analyse factorielle des correspondances à l’étude des variations annuelles dans les populations de microarthropodes. Bull Ecol 4:319–327

    Google Scholar 

  114. Ponge JF (2000) Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biol Fertil Soils 32:508–522

    Google Scholar 

  115. Ponge JF, Salmon S (2013) Spatial and taxonomic correlates of species and species trait assemblages in soil invertebrate communities. Pedobiologia 56:129–136

    Google Scholar 

  116. Poole TB (1961) An ecological study of the Collembola in a coniferous forest soil. Pedobiologia 1:113–137

    Google Scholar 

  117. Porco D, Deharveng L, Gers C (2004) Sexual discrimination with cuticular lipids in Schoetella ununguiculata (Tullberg, 1869) (Collembola: Hypogastruridae). Pedobiologia 48:581–583

    Google Scholar 

  118. Porco D, Deharveng L, Skarżyński D (2009) Sex pheromone in Tetrodontophora bielanensis (Waga, 1842) (Collembola: Onychiuridae): indirect reproduction mediated by cuticular compounds. Pedobiologia 53:59–63

    Google Scholar 

  119. Prinzing A, Ozinga WA, Brändle M, Courty PE, Hennion F, Labandeira C, Parisod C, Pihain M, Bartish IV (2017) Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks. New Phytol 213:66–82

    PubMed  Google Scholar 

  120. Puga-Freitas R, Blouin M (2015) A review of the effects of soil organisms on plant hormone signalling pathways. Environ Exp Bot 114:104–116

    CAS  Google Scholar 

  121. Purrington FF, Kendall PA, Bater JE, Stinner BR (1991) Alarm pheromone in a gregarious poduromorph collembolan (Collembola: Hypogastruridae). Great Lakes Entomol 24:75–78

    Google Scholar 

  122. Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    CAS  PubMed  Google Scholar 

  123. Reiffarth EL, Petticrew PN, Owens DA Lobb DG (2016) Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: a review. Sci Total Environ 565:8–27

    CAS  PubMed  Google Scholar 

  124. Roelofs WL, Brown RL (1982) Pheromones and evolutionary relationships of Tortricidae. Annu Rev Ecol Syst 13:395–422

    CAS  Google Scholar 

  125. Rollo CD, Czyzewska E, Borden JH (1994) Fatty acid necromones for cockroaches. Naturwissenschaften 81:409–410

    CAS  Google Scholar 

  126. Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7:e01395–e01315

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489:431–433

    CAS  PubMed  Google Scholar 

  128. Sadaka-Laulan N, Ponge JF, Roquebert MF, Bury É, Boumezzough A (1998) Feeding preferences of the collembolan Onychiurus sinensis for fungi colonizing holm oak litter (Quercus rotundifolia Lam.). Eur J Soil Biol 34:179–188

    Google Scholar 

  129. Salmon S (2001) Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Biol Fertil Soils 34:304–310

    CAS  Google Scholar 

  130. Salmon S (2004) The impact of earthworms on the abundance of Collembola: improvement of food resources or of habitat? Biol Fertil Soils 40:323–333

    Google Scholar 

  131. Salmon S, Ponge JF (1999) Distribution of Heteromurus nitidus (Hexapoda, Collembola) according to soil acidity: interactions with earthworms and predator pressure. Soil Biol Biochem 31:1161–1170

    CAS  Google Scholar 

  132. Salmon S, Ponge JF (2001) Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biol Biochem 33:1959–1969

    CAS  Google Scholar 

  133. Salmon S, Geoffroy JJ, Ponge JF (2005) Earthworms and Collembola relationships: effects of predatory centipedes and humus forms. Soil Biol Biochem 37:487–495

    CAS  Google Scholar 

  134. Sánchez-García A, Peñalver E, Delclòs X, Engel MS (2018) Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PLoS One 13:e0191669

    PubMed  PubMed Central  Google Scholar 

  135. Sanon A, Andrianjaka ZN, Prin Y, Bally R, Thioulouse J, Comte G, Duponnois R (2009) Rhizosphere microbiota interferes with plant-plant interactions. Plant Soil 321:259–278

    CAS  Google Scholar 

  136. Sbarbati A, Osculati F (2006) Allelochemical communication in vertebrates: kairomones, allomones and synomones. Cells Tissues Organs 183:206–219

    CAS  PubMed  Google Scholar 

  137. Schooley RL, Wiens JA (2003) Finding habitat patches and directional connectivity. Oikos 102:559–570

    Google Scholar 

  138. Seastedt TR (1984) The role of microarthropods in decomposition and mineralization process. Annu Rev Entomol 29:25–46

    Google Scholar 

  139. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2013) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 110:4853–4853

    CAS  Google Scholar 

  140. Shorey HH (1973) Behavioural responses to insect pheromones. Annu Rev Entomol 18:349–380

    CAS  PubMed  Google Scholar 

  141. Smolanoff J, Kluge AF, Meinwald J, McPhail A, Miller RW, Hicks K, Eisner T (1975) Polyzonimine: a novel terpenoid insect repellent produced by a millipede. Science 188:734–736

    CAS  PubMed  Google Scholar 

  142. Staaden S, Milcu A, Rohlfs M, Scheu S (2011) Olfactory cues associated with fungal grazing intensity and secondary metabolite pathway modulate Collembola foraging behaviour. Soil Biol Biochem 43:1411–1416

    CAS  Google Scholar 

  143. Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. BioScience 51:235–246

    Google Scholar 

  144. Stam E, Isaaks A, Ernsting G (2002) Distant lovers: spermatophore deposition and destruction behaviour by male springtails. J Insect Behav 15:253–268

    Google Scholar 

  145. Stamps JA, Swaisgood RR (2007) Someplace like home: experience, habitat selection and conservation biology. Appl Anim Behav Sci 102:392–409

    Google Scholar 

  146. Stökl J, Steiger S (2017) Evolutionary origin of insect pheromones. Curr Opinion Insect Sci 24:36–42

    Google Scholar 

  147. Stötefeld L, Scheu S, Rohlfs M (2012) Fungal chemical defence alters density-dependent foraging behaviour and success in a fungivorous soil arthropod. Ecol Entomol 37:323–329

    Google Scholar 

  148. Symonds MRE, Elgar MA (2004) The mode of pheromone evolution: evidence from bark beetles. Proc R Soc Lond B 271:839–846

    Google Scholar 

  149. Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228

    PubMed  Google Scholar 

  150. Symonds MRE, Wertheim B (2005) The mode of evolution of aggregation pheromones in Drosophila species. J Evol Biol 18:1253–1263

    CAS  PubMed  Google Scholar 

  151. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci U S A 100:14549–14554

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones: an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514

    CAS  PubMed  Google Scholar 

  153. Usher MB (1969) Some properties of the aggregations of soil arthropods: Collembola. J Anim Ecol 38:607–622

    Google Scholar 

  154. Usher MB, Balogun RA (1966) A defence mechanism in Onychiurus (Collembola, Onychiuridae). Entomol Monthly Mag 102:237–238

    Google Scholar 

  155. Van Arnam EB, Currie CR, Clardy J (2018) Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 47:1638–1651

    PubMed  Google Scholar 

  156. Veen GF, Freschet GT, Ordonez A, Wardle DA (2015) Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124:187–195

    Google Scholar 

  157. Verhoef HA (1984) Releaser and primer pheromones in Collembola. J Insect Physiol 30:665–670

    Google Scholar 

  158. Verhoef HA, Nagelkerke CJ (1977) Formation and ecological significance of aggregations of Collembola. Oecologia 31:215–226

    PubMed  Google Scholar 

  159. Verhoef HA, Nagelkerke CJ, Joosse ENG (1977a) Aggregation pheromones in Collembola. J Insect Physiol 23:1009–1013

    Google Scholar 

  160. Verhoef HA, Nagelkerke CJ, Joosse ENG (1977b) Aggregation pheromones in Collembola (Apterygota): a biotic cause of aggregation. Rev Écol Biol Sol 14:21–25

    Google Scholar 

  161. Vet LEM (1999) From chemical to population ecology: infochemical use in an evolutionary context. J Chem Ecol 25:31–49

    CAS  Google Scholar 

  162. Waldorf ES (1974a) Sex pheromone in the springtail, Sinella curviseta. Environ Entomol 3:916–918

    Google Scholar 

  163. Waldorf ES (1974b) Variations in cleaning between the sexes of Sinella coeca (Collembola: Entomobryidae). Psyche 81:254–257

    Google Scholar 

  164. Waldorf ES (1976) Antennal amputation in Sinella curviseta (Collembola: Entomobryidae). Ann Entomol Soc Am 69:841–842

    Google Scholar 

  165. Wall DH, Moore JC (1999) Interactions underground: soil biodiversity, mutualism, and ecosystem processes. BioScience 49:109–117

    Google Scholar 

  166. Walsh MI, Bolger T (1993) Effects of diet on the interactions between Hypogastrura denticulata Bagnall and Onychiurus furcifer Börner in laboratory cultures. Eur J Soil Biol 29:155–160

    Google Scholar 

  167. Wehner K, Norton RA, Blüthgen N, Heethoff M (2016) Specialization of Oribatid mites to forest microhabitats: the enigmatic role of litter. Ecosphere 7:e01336

    Google Scholar 

  168. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    CAS  PubMed  Google Scholar 

  169. Wertheim B, Van Baalen EJA, Dicke M, Vet LEM (2005) Pheromone-mediated aggregation in non-social arthropods: an evolutionary ecological perspective. Annu Rev Entomol 50:321–346

    CAS  PubMed  Google Scholar 

  170. Westerberg L, Lindström T, Nilsson E, Wennergren U (2008) The effect on dispersal from complex correlations in small-scale movement. Ecol Model 213:263–272

    Google Scholar 

  171. Widenfalk LA, Malmström A, Berg MP, Bengtsson J (2016) Small-scale Collembola community composition in a pine forest soil: overdispersion in functional traits indicates the importance of species interactions. Soil Biol Biochem 103:52–62

    CAS  Google Scholar 

  172. Wilson EO, Bossert WH (1963) Chemical communication among animals. Recent Prog Horm Res 19:673–716

    CAS  PubMed  Google Scholar 

  173. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    PubMed  Google Scholar 

  174. Zhao C, Griffin JN, Wu XW, Sun SC (2013) Predatory beetles facilitate plant growth by driving earthworms to lower soil layers. J Anim Ecol 82:749–758

    PubMed  Google Scholar 

  175. Zizzari ZV, Braakhuis A, Van Straalen NM, Ellers J (2009) Female preference and fitness benefits of mate choice in a species with dissociated sperm transfer. Anim Behav 78:1261–1267

    Google Scholar 

  176. Zizzari ZV, Engl T, Lorenz S, Van Straalen NM, Ellers J, Groot AT (2017) Love at first sniff: a spermatophore-associated pheromone mediates partner attraction in a collembolan species. Anim Behav 124:221–227

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ponge.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salmon, S., Rebuffat, S., Prado, S. et al. Chemical communication in springtails: a review of facts and perspectives. Biol Fertil Soils 55, 425–438 (2019). https://doi.org/10.1007/s00374-019-01365-8

Download citation

Keywords

  • Chemical communication
  • Collembola
  • Pheromones
  • Aggregation
  • Phylogeny
  • Community