Skip to main content
Log in

Pathways and controls of N2O production in greenhouse vegetable production soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Here, the combined approaches of a 15N tracing technique, DNA and mRNA analyses, and modeling were used to investigate the mechanisms underlying rapid nitrate (NO3) accumulation and identify the relative contributions of autotrophic nitrification, heterotrophic nitrification, codenitrification, and denitrification to nitrous oxide (N2O) production in six vegetable soils. The soil pH had a positive effect on the NO3 retention capacity (p < 0.01) and a negative effect on the net NO3 production rate (p < 0.05), resulting in higher NO3 accumulation in acidic soils. Meanwhile, autotrophic nitrification accounted for 39–86% of N2O production in alkaline soils, whereas denitrification was responsible for 85% of N2O production in acidic soils. The results of structural equation modeling indicated that autotrophic nitrification-derived N2O production was influenced by soil C/N ratio, the gross NO3 production rate, and the ammonia-oxidizing archaea (AOA) amoA/ammonia-oxidizing bacteria (AOB) amoA mRNA ratio, while denitrification-derived N2O production was influenced by pH, the gross NO3 consumption rate, and the abundance of nirS mRNA, all of which were influenced directly and indirectly by in situ climate parameters of mean annual precipitation and mean annual temperature. Furthermore, regression analyses revealed that the soil total N content affected heterotrophic nitrification- and the pH affected codenitrification-derived N2O production, which contributed 9–76% and 0–7%, respectively, to the total N2O production in vegetable soils. The current findings improve our understanding of the mechanisms of NO3 buildup and N2O stimulation in intensively managed agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beeckman F, Motte H, Beeckman T (2018) Nitrification in agricultural soils: impact, actors and mitigation. Curr Opin Biotechnol 50:166–173

    Article  CAS  PubMed  Google Scholar 

  • Castellano-Hinojosa A, González-López J, Bedmar EJ (2018) Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol Fertil Soils 54:829–840

    Article  CAS  Google Scholar 

  • Chen Z, Ding W, Xu Y, Müller C, Rütting T, Yu H, Fan J, Zhang J, Zhu T (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75

    Article  CAS  Google Scholar 

  • Clough TJ, Lanigan GJ, Klein CA, Samad MS, Morales SE, Rex D, Bakken LR, Johns C, Condron LM, Grant J, Richards KG (2017) Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Sci Rep 7:2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bernd B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. Eur J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado-Comesaña A (2014) Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102:1592–1605

    Article  CAS  Google Scholar 

  • Duan PP, Zhang YL, Cong YH, Xu WJ, Yu N, Zhang YL (2017) The dynamics of soil-soluble nitrogen and soil-retained nitrogen in greenhouse soil. Acta Agric Scand Sect B Soil Plant Sci 67:51–61

    CAS  Google Scholar 

  • Duan P, Wu Z, Zhang Q, Fan C, Xiong Z (2018) Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils. Soil Biol Biochem 120:37–47

    Article  CAS  Google Scholar 

  • EPA US (2015) Inventory of U.S. greenhouse gas emissions and sinks 1990–2013. U.S. Environmental Protection Agency, Washington, DC

  • Espenberg M, Truu M, Mander Ü, Kasak K, Nõlvak H, Ligi T, Oopkaup K, Maddison M, Truu J (2018) Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Sci Rep 8:4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo V, Enrich-Prast A, Rütting T (2016) Soil organic matter content controls gross nitrogen dynamics and N2O production in riparian and upland boreal soil. Eur J Soil Sci 67:782–791

    Article  CAS  Google Scholar 

  • Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55

    Article  CAS  PubMed  Google Scholar 

  • Han X, Shen W, Zhang J, Müller C (2018) Microbial adaptation to long-term N supply prevents large responses in N dynamics and N losses of a subtropical forest. Sci Total Environ 626:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Hink L, Gubry-Rangin C, Nicol GW, Prosser JI (2018) The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J 12:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland JE, Bennett AE, Newton AC, White PJ, McKenzie BM, George TS, Pakeman RJ, Bailey JS, Fornara DA, Hayes RC (2018) Liming impacts on soils, crops and biodiversity in the UK: a review. Sci Total Environ 610:316–332

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Zhang Y, Huang B, Teng Y (2017) Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170:183–195

    Article  CAS  PubMed  Google Scholar 

  • Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzún C, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1:543–548

    Article  CAS  Google Scholar 

  • Jansen-Willems AB, Lanigan GJ, Clough TJ, Andresen LC, Müller C (2016) Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil. SOIL 2:601–614

    Article  CAS  Google Scholar 

  • Jung MY, Well R, Min D, Giesemann A, Park SJ, Kim JG, Kim SJ, Rhee SK (2014) Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Kanter D, Mauzerall DL, Ravishankara AR, Daniel JS, Portmann RW, Grabiel PM, Moomaw WR, Galloway JN (2013) A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proc Natl Acad Sci U S A 110:4451–4457

    Article  PubMed  PubMed Central  Google Scholar 

  • Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549:269–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, Geelhoed JS, Strous M (2014) The environmental controls that govern the end product of bacterial nitrate respiration. Science 345:676–679

    Article  CAS  PubMed  Google Scholar 

  • Krauss M, Krause HM, Spangler S, Kandeler E, Behrens S, Kappler A, Mäder P, Gattinger A (2017) Tillage system affects fertilizer-induced nitrous oxide emissions. Biol Fertil Soils 53:49–59

    Article  CAS  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Lang M, Li P, Han X, Qiao Y, Miao S (2016) Gross nitrogen transformations in black soil under different land uses and management systems. Biol Fertil Soils 52:233–241

    Article  CAS  Google Scholar 

  • Langarica-Fuentes A, Manrubia M, Giles ME, Mitchell S, Daniell TJ (2018) Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil. Soil Biol Biochem 120:70–79

    Article  CAS  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25

    Article  CAS  Google Scholar 

  • Li D, Yang Y, Chen H, Xiao K, Song T, Wang K (2017) Soil gross nitrogen transformations in typical karst and nonkarst forests, southwest China. J Geophys Res Biogeosci 122:2831–2840

    Article  CAS  Google Scholar 

  • Li D, Liu J, Chen H, Zheng L, Wang K (2018) Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region. J Environ Manag 212:1–7

    Article  CAS  Google Scholar 

  • Liu R, Hayden HL, Suter H, Hu H, Lam SK, He J, Mele PM, Chen D (2017) The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biol Fertil Soils 53:141–152

    Article  CAS  Google Scholar 

  • Lu X, Bottomley PJ, Myrold DD (2015) Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils. Soil Biol Biochem 85:54–62

    Article  CAS  Google Scholar 

  • Miller KS, Geisseler D (2018) Temperature sensitivity of nitrogen mineralization in agricultural soils. Biol Fertil Soils 54:853–860

    Article  CAS  Google Scholar 

  • Ministry of Agriculture of the People's Republic of China (MAC) (2014) China Agriculture Yearbook, 2014. China Agriculture Press, Beijing

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  • Müller C, Laughlin RJ, Spott O, Rütting T (2014) Quantification of N2O emission pathways via a 15N tracing model. Soil Biol Biochem 72:44–54

    Article  CAS  Google Scholar 

  • Onley JR, Ahsan S, Sanford RA, Löffler FE (2018) Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol 84:e01985–e01917

    PubMed  PubMed Central  Google Scholar 

  • Pan H, Ying S, Liu H, Zeng L, Zhang Q, Liu Y, Xu J, Li Y, Di Y (2018) Microbial pathways for nitrous oxide emissions from sheep urine and dung in a typical steppe grassland. Biol Fertil Soils 54:717–730

    Article  CAS  Google Scholar 

  • Pellegrini AFA, Hoffmann WA, Franco AC (2014) Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95:342–352

    Article  PubMed  Google Scholar 

  • Perakis SS, Hedin LO (2001) Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82:2245–2260

    Article  Google Scholar 

  • Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob Chang Biol 17:1497–1504

    Article  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Putz M, Schleusner P, Rütting T, Hallin S (2018) Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil. Soil Biol Biochem 123:97–104

    Article  CAS  Google Scholar 

  • Qin H, Tang Y, Shen J, Wang C, Chen C, Yang J, Liu Y, Chen X, Li Y, Hou H (2018) Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biol Fertil Soils 54:885–895

    Article  Google Scholar 

  • Qu Z, Wang J, Almoy T, Bakken LR (2014) Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob Chang Biol 20:1685–1698

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416

    Article  CAS  Google Scholar 

  • Rex D, Clough TJ, Richards KG, de Klein C, Morales SE, Samad MS, Grant J, Lanigan GJ (2018) Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutr Cycl Agroecosyst 110:1–15

    Article  CAS  Google Scholar 

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489

    Article  CAS  Google Scholar 

  • Selbie DR, Lanigan GJ, Laughlin RJ, Di HJ, Moir JL, Cameron KC, Clough TJ, Watson CJ, Grant J, Somers C, Richards KG (2015) Confirmation of co-denitrification in grazed grassland. Sci Rep 5:17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A 111:9199–9204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Hu HW, Zhu-Barker X, Hayden H, Wang J, Suter H, Chen D, He JZ (2017) Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate. Environ Microbiol 19:4851–4865

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Spott O, Florian SC (2011) Formation of hybrid N2O in a suspended soil due to co-denitrification of NH2OH. J Plant Nutr Soil Sci 174:554–567

    Article  CAS  Google Scholar 

  • Spott O, Russow R, Stange CF (2011) Formation of hybrid N2O and hybrid N2 due to codenitrification: first review of a barely considered process of microbially mediated N-nitrosation. Soil Biol Biochem 43:1995–2011

    Article  CAS  Google Scholar 

  • Stempfhuber B, Richter-Heitmann T, Bienek L, Schöning I, Schrumpf M, Friedrich M, Schulz S, Schloter M (2017) Soil pH and plant diversity drive co-occurrence patterns of ammonia and nitrite oxidizer in soils from forest ecosystems. Biol Fertil Soils 53:691–700

    Article  CAS  Google Scholar 

  • Toyoda S, Yano M, Nishimura SI, Akiyama H, Hayakawa A, Koba K, Sudo S, Yagi K, Makabe A, Tobari Y, Ogawa NO, Ohkouchi N, Yamada K, Yoshida N (2011) Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Glob Biogeochem Cycles 25:GB2008

    Article  CAS  Google Scholar 

  • van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten MSM, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart − how to use metagenomics to understand soil quality. Biol Fertil Soils 56:479–484

    Article  Google Scholar 

  • Wang J, Xiong Z, Yan X (2011) Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmos Environ 45:6923–6929

    Article  CAS  Google Scholar 

  • Wen L, Li D, Yang L, Luo P, Chen H, Xiao K, Song T, Zhang W, He X, Chen H, Wang K (2016) Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China. Biogeochemistry 129:1–14

    Article  CAS  Google Scholar 

  • Wertz S, Dandie CE, Goyer C, Trevors JT, Patten CL (2009) Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Appl Environ Microbiol 75:7365–7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrage-Mönnig N, Horn MA, Well R, Müller C, Velthof G, Oenema O (2018) The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol Biochem 123:3–16

    Article  CAS  Google Scholar 

  • Xie Z, Le Roux X, Wang C, Gu Z, An M, Nan H, Chen B, Li F, Liu Y, Du G, Feng H, Ma X (2014) Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol Biochem 77:89–99

    Article  CAS  Google Scholar 

  • Zhang J, Cai Z, Zhu T (2011) N2O production pathways in the subtropical acid forest soils in China. Environ Res 111:643–649

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Müller C, Cai Z (2015) Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol Biochem 84:199–209

    Article  CAS  Google Scholar 

  • Zhang Y, Ding H, Zheng X, Ren X, Cardenas L, Carswell A, Misselbrook T (2018) Land-use type affects N2O production pathways in subtropical acidic soils. Environ Pollut 237:237–243

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Han S, Huang Y, Wang Y, Wang M (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob Biogeochem Cycles 18:GB2018

    Article  CAS  Google Scholar 

  • Zhu T, Zhang J, Cai Z (2011a) The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant Soil 343:313–327

    Article  CAS  Google Scholar 

  • Zhu T, Zhang J, Cai Z, Müller C (2011b) The N transformation mechanisms for rapid nitrate accumulation in soils under intensive vegetable cultivation. J Soils Sediments 11:1178–1189

    Article  CAS  Google Scholar 

  • Zhu T, Zeng S, Qin H, Zhou K, Yang H, Lan F, Huang F, Guo J, Müller C (2016) Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil Biol Biochem 97:99–101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Paolo Nannipieri and two anonymous reviewers for their valuable comments and critical evaluation on this manuscript. We also would like to thank Professor Christoph Müller and Professor Jinbo Zhang for N transformation rates assistance. We also thank Dr. Xianwang Kong and Dr. Bo Li for their many constructive comments.

Funding

This work was jointly supported by the National Natural Science Foundation of China (41471192), the Special Fund for Agro-Scientific Research in the Public Interest (201503106), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX18_0678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqin Xiong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 98.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Zhou, J., Feng, L. et al. Pathways and controls of N2O production in greenhouse vegetable production soils. Biol Fertil Soils 55, 285–297 (2019). https://doi.org/10.1007/s00374-019-01348-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-019-01348-9

Keywords

Navigation