Skip to main content

Advertisement

Log in

Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2018

This article has been updated

Abstract

The conversion of natural forests to tree plantations alters the quality and decreases the quantity of litter inputs into the soil, but how the alteration of litter inputs affect soil organic matter (SOM) decomposition remain unclear. We examined SOM decomposition by adding 13C-labeled leaf-litter of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) to soils from a natural evergreen broad-leaved forest and an adjacent Chinese fir plantation converted from a natural evergreen broad-leaved forest 42 years ago. Over 195 days, we monitored CO2 efflux and its δ13C, microbial biomass, and the composition of microbial groups by phospholipid fatty acids (PLFAs). To distinguish priming mechanisms, partitioning of C sources in CO2 and microbial biomass was determined based on δ13C. Leaf-litter addition to natural forest increased microbial biomass and induced up to 14% faster SOM decomposition (positive priming) than that in soil without litter. In contrast, negative priming in soils under plantation indicated preferential use of added leaf-litter rather than recalcitrant SOM. This preferential use of leaf-litter was supported by an increased fungal to bacterial ratio and litter-derived (13C) microbial biomass, reflecting increased substrate recalcitrance, the respective changes in microbial substrate utilization and increased C use efficiency. The magnitude and direction of priming effects depend on microbial preferential utilization of new litter or SOM. Concluding, the impact of coniferous leaf-litter inputs on the SOM priming is divergent in natural evergreen broad-leaved forests and plantations, an important consideration in understanding long-term C dynamics and cycling in natural and plantation forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 13 October 2018

    The author regret that a typographical error was present in the Fig. 2 of the published original version of this article; the text “Natual” in the image should have been “Natural”. The correct Fig. 2 is now presented correctly in this article.

References

  • Ayres E, Steltzer H, Berg S, Wall DH (2009) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y (2014) Microbial interactions affect sources of priming induced by cellulose. Soil Biol Biochem 74:39–49

    Article  CAS  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951

    Article  Google Scholar 

  • Chen GS, Yang YS, Xie JS, Guo JF, Gao R, Qian W (2005) Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area: effects on carbon storage. Ann Forest Sci 62:659–668

    Article  CAS  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367

    Article  Google Scholar 

  • Cheng WX (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    Article  Google Scholar 

  • Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Tansley review: synthesis and modeling perspectives of rhizosphere priming. New Phytol 201:31–44

    Article  CAS  Google Scholar 

  • Collins CG, Carey CJ, Aronson EL, Kopp CW, Diez JM (2016) Direct and indirect effects of native range expansion on soil microbial community structure and function. J Ecol 104:1271–1283

    Article  Google Scholar 

  • Creamer CA, Menezes ABD, Krull ES, Sanderman J, Newton-Walters R, Farrell M (2015) Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol Biochem 80:175–188

    Article  CAS  Google Scholar 

  • De Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  CAS  Google Scholar 

  • Don A, Böhme IH, Dohrmann AB, Poeplau C, Tebbe CC (2017) Microbial community composition affects soil organic carbon turnover in mineral soils. Biol Fertil Soils 53:445–456

    Article  CAS  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216

    Article  CAS  Google Scholar 

  • Dungait JAJ, Kemmitt SJ, Michallon L, Guo S, Wen Q, Brookes PC, Evershed RP (2011) Variable responses of the soil microbial biomass to trace concentrations of 13C-labelled glucose, using 13C-PLFA analysis. Eur J Soil Sci 62:117–126

    Article  CAS  Google Scholar 

  • FAO (2006) Global forest resources assessment 2005: progress towards sustainable forest management. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9:1322–1332

    Article  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713

    Article  CAS  Google Scholar 

  • Gunina A, Dippold M, Glaser B, Kuzyakov Y (2014) Fate of low molecular weight organic substances in an arable soil: from microbial uptake to utilisation and stabilisation. Soil Biol Biochem 77:304–313

    Article  CAS  Google Scholar 

  • Guo J, Yang Z, Lin C, Liu X, Chen G, Yang Y (2016) Conversion of a natural evergreen broadleaved forest into coniferous plantations in a subtropical area: effects on composition of soil microbial communities and soil respiration. Biol Fertil Soils 52:799–809

    Article  CAS  Google Scholar 

  • Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber PJ, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461

    Article  Google Scholar 

  • Huang ZQ, He ZM, Wan XH, Hu ZH, Fan SH, Yang YS (2013) Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant Soil 364:303–314

    Article  CAS  Google Scholar 

  • Kramer S, Marhan S, Ruess L, Armbruster W, Butenschoen O, Haslwimmer H, Kuzyakov Y, Pausch J, Scheunemann N, Schoene J, Schmalwasser A, Totsche KU, Walker F, Scheu S, Kandeler E (2012) Carbon flow into microbial and fungal biomass as basis for the belowground food web of agroecosystems. Pedobiologia 55:111–119

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Li QR, Tian YQ, Zhang XY, Xu XL, Wang HM, Kuzyakov Y (2017) Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Appl Soil Ecol 114:152–160

    Article  Google Scholar 

  • Lin C, Yang Y, Guo J, Chen G, Xie J (2011) Fine root decomposition of evergreen broadleaved and coniferous tree species in midsubtropical China: dynamics of dry mass, nutrient and organic fractions. Plant Soil 338:311–327

    Article  CAS  Google Scholar 

  • Lin Z, Li Y, Tang C, Luo Y, Fu W, Cai X, Li Y, Yue T, Jiang P, Hu S, Chang SX (2018) Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biol Fertil Soils 54:467–480

    Article  CAS  Google Scholar 

  • Liu XF, Lin TC, Yang ZJ, Vadeboncoeur MA, Lin CF, Xiong DC, Lin WS, Chen GS, Xie JS, Li YQ, Yang YS (2017) Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of Castanopsis carlesii. Plant Soil 418:141–151

    Article  CAS  Google Scholar 

  • Lü MK, Xie JS, Wang C, Guo JF, Wang MH, Liu XF, Chen YM, Chen GS, Yang YS (2015) Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biol Fertil Soils 51:857–867

    Article  CAS  Google Scholar 

  • Lu Y, Coops NC, Wang T, Wang G (2015) A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6:360–379

    Article  Google Scholar 

  • Lyu MK, Xie JS, Ukonmaanaho L, Jiang MH, Li YQ, Chen YM, Yang ZJ, Zhou YX, Lin WS, Yang YS (2017) Land-use change exerts a strong impact on deep soil C stabilization in subtropical forests. J Soils Sediments 17:2305–2317

    Article  CAS  Google Scholar 

  • Meidute S, Demoling F, Bååth E (2008) Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol Biochem 40:2334–2344

    Article  CAS  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Miltner A, Kindler R, Knicker H, Richnow HH, Kästner M (2009) Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org Geochem 40:978–985

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55

    Article  CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Commun Ecol Package 10

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz Werner A, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob Chang Biol 19:1562–1571

    Article  Google Scholar 

  • Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  CAS  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Chang Biol 16:416–426

    Article  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • SFA (2009) China’s forestry 2004–2008. China Forestry Publishing House, Beijing

    Google Scholar 

  • Shihan A, Hättenschwiler S, Milcu A, Joly FX, Santonja M, Fromin N (2017) Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol Fertil Soils 53:171–185

    Article  Google Scholar 

  • Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017) Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol Fertil Soils 53:287–301

    Article  CAS  Google Scholar 

  • Smith P (2014) Do grasslands act as a perpetual sink for carbon? Glob Chang Biol 20:2708–2711

    Article  Google Scholar 

  • State Soil Survey Service of China (1998) China soil. China Agriculture Press, Beijing

  • Tunlid A, Hoitink HAJ, Low C, White DC (1989) Characterization of bacteria that suppress rhizoctonia damping-off in bark compost media by analysis of fatty-acid biomarkers. Appl Environ Microbiol 55:1368–1374

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Werf GR, Morton DC, DeFries RS, Olivier JG, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Veen GFC, Freschet GT, Ordonez A, Wardle DA (2015) Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124:187–197

    Article  Google Scholar 

  • Yang Y, Guo J, Chen G, Yin Y, Gao R, Lin C (2009) Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant Soil 323:153–162

    Article  CAS  Google Scholar 

  • Yu ZP, Huang ZQ, Wang MH, Liu RQ, Zheng LJ, Wan XH, Hu ZH, Davis MR, Lin TC (2015) Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol Biochem 90:188–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Soil Science Consulting (https://soilscicon.wordpress.com) for help in the preparation of the manuscript.

Funding

The research was funded by the National Key Research and Development Program (No. 2016YFD0600204), the National Natural Science Foundation of China (Nos. U1405231, U1505233, and 31470501), and the National “973” Program of China (No. 2014CB954003). The publication was supported by the Government Program of Competitive Growth of Kazan Federal University and with the support of the “RUDN University program 5-100.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsheng Xie or Yusheng Yang.

Electronic supplementary material

ESM 1

(DOCX 979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, M., Xie, J., Vadeboncoeur, M.A. et al. Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biol Fertil Soils 54, 925–934 (2018). https://doi.org/10.1007/s00374-018-1314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1314-5

Keywords

Navigation