Skip to main content

Advertisement

Log in

Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In this study, we quantified the contribution of forest-derived carbon (FDC) to the soil organic C (SOC) pool along a natural succession from savanna (S) to mixed Marantaceae forest (MMF) in the Lopè National Park, Gabon. Four 1-ha plots, corresponding to different stages along the natural succession, were used to determine the SOC stock and soil C isotope composition (δ13C) to derive the FDC contribution in different soil layers down to 1 m depth. Besides, to investigate changes in SOC stability, we determined the 14C concentration of SOC to 30 cm depth and derived turnover time (TT). Results indicated that SOC increased only at the end of the succession in the MMF stage, which stored 46% more SOC (41 Mg C ha−1) in the 0–30 cm depth than the S stage (28.8 Mg C ha−1). The FDC contribution increased along forest succession affecting mainly the top layers of the initial successional stages to 15 cm depth and reaching 70 cm depth in the MMF stage. The TT suggests a small increase in stability in the 0–5 cm layer from S (146 years) to MMF (157 years) stages. Below 5 cm, the increase in stability was high, suggesting that FDC can remain in soils for a much longer time than savanna-derived C. In conclusion, the natural succession toward Marantaceae forests can positively impact climate change resulting in large SOC stocks, which can be removed from the atmosphere and stored for a much longer time in forest soils compared to savanna soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aubreville A (1967) Les éstranges mosaïques forêt-savane du sommet de la boucle de l’Ogooué au Gabon. Adansonia Serie 2(7):13–22

    Google Scholar 

  • Blanco-Canqui H, Lal R, Post WM, Izaurralde RC, Shipitalo MJ (2006) Organic carbon influences on soil particle density and rheological properties. Soil Sci Soc Am J 70:1407–1414

    Article  CAS  Google Scholar 

  • Boone RD, Grigal DF, Sollins P, Ahrens RJ, Armstring DE (1999) Soil sampling, preparation, archiving, and quality control. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 3–28

    Google Scholar 

  • Boutton TW, Liao JD (2010) Changes in soil nitrogen storage and δ15N with woody plant encroachment in a subtropical savanna parkland landscape. J Geophys Res 115:G03019

    Article  CAS  Google Scholar 

  • Boutton TW, Archer SR, Midwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 8:5–41

    Article  Google Scholar 

  • Buitenwerf R, Bond JW, Stevens N, Trollope WSW (2012) Increased tree densities in south African savannas: 50 years of data suggests CO2 as a driver. Glob Chang Biol 18:675–684

    Article  Google Scholar 

  • Chiti T, Mihindou V, Jeffery KJ, Yadvinder M, Oliveira F, White LJT, Valentini R (2017) Impact of woody encroachment on soil organic carbon storage in the Lopè National Park, Gabon. Biotropica 49:9–12

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Sys 27:305–335

    Article  Google Scholar 

  • Cuni-Sanchez A, White LJT, Calders K, Jeffery KJ, Abernethy K, Burt A, Disney M, Gilpin M, Gomez-Dans JL, Lewis SL (2016) African savanna-forest boundary dynamics: a 20-year study. PLoS One 11:e0156934

    Article  CAS  Google Scholar 

  • Delègue MA, Fuhr M, Schwartz D, Mariotti A, Nasi R (2001) Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129:106–113

    Article  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotopes ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–722

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubic KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng SH (2000) Soil carbon cycling in a temperate forest: radiocarbon based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69

    Article  Google Scholar 

  • Gearing JN (1991) The study of diet and trophic relationships through natural abundance 13C. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic Press, San Diego, pp 363–375

    Google Scholar 

  • Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57:845–858

    Article  Google Scholar 

  • Gleixner G, Czimczik CI, Kramer C, Lühker B, Schmidt MWI (2001) Plant compounds and their turnover and stabilization as soil organic matter. In: Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 201–215

    Chapter  Google Scholar 

  • Grace J, San José J, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400

    Article  Google Scholar 

  • Guo B, Gifford RM (2002) Soil carbon stocks and land use change: a meta analyses. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Hua Q, Barbetti M, Rakowski A (2013) Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55:2059–2072

    Article  CAS  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • IPCC (2006) Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) AFOLU, Volume 4, Chapter 2, P. 2. IGES, Japan, p 29

    Google Scholar 

  • Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grassland. Nature 418:623–626

    Article  CAS  Google Scholar 

  • Jeffery KJ, Korte L, Palla F, Walters G, White LJT, Abernethy KA (2014) Fire management in a changing landscape: a case study from Lopé National Park, Gabon. Park 20(1):39–52

    Article  Google Scholar 

  • Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107:19691–19695

    Article  Google Scholar 

  • Lai R, Lagomarsino A, Ledda L, Roggero PP (2014) Variation in soil C and microbial functions across tree canopy projection and open grassland microenvironments. Turk J Agric For 38:62–69

    Article  Google Scholar 

  • Levin I, Hesshaimer V (2000) Radiocarbon: a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80

    Article  CAS  Google Scholar 

  • Maley J, Giresse P, Doumenge C, Favier C (2012) Comment on “intensifying weathering and land use in Iron Age Central Africa”. Science 337:1040

    Article  CAS  Google Scholar 

  • Marín-Spiotta E, Swanston CW, Torn MS, Silver WL, Burton SD (2008) Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma 143:49–62

    Article  CAS  Google Scholar 

  • Marzaioli F, Borriello G, Passariello I, Lubritto C, de Cesare N, D’Onofrio A, Terrasi F (2008) Zinc reduction as an alternative method for AMS radiocarbon dating: process optimization at CIRCE. Radiocarbon 50:139–149

    Article  CAS  Google Scholar 

  • McFarlane KJ, Torn MS, Hanson PJ, Porras RC, Swanston CW, Callaham MA Jr, Guilderson TP (2013) Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry 112:457–476

    Article  CAS  Google Scholar 

  • Millar RB, Anderson MJ (2004) Remedies for pseudoreplication. Fish Res 70:397–407

    Article  Google Scholar 

  • Mitchard ETA, Flintrop CM (2013) Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil Trans R Soc B 368:20120406

    Article  Google Scholar 

  • Mitchard ETA, Saatchi SS, White LJT, Abernethy KA, Jeffery KJ, Lewis SL, Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P (2012) Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences 9:179–191

    Article  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Neumann K, Eggert MKH, Oslisly R et al (2012) Comment on “intensifying weathering and land use in Iron Age Central Africa”. Science 337:1040

    Article  CAS  Google Scholar 

  • Ngomanda A, Neumann K, Schaweizer A, Maley J (2009) Seasonality change and the third millenium BP rainforest crisis in southern Cameroon (Central Africa). Quat Res 71:307–318

    Article  Google Scholar 

  • Novara A, Gristina L, Kuzyakov Y, Schillaci C, Laudicina VA, La Mantia T (2013) Turnover and availability of soil organic carbon under different Mediterranean land-uses as estimated by 13C natural abundance. Eur J Soil Sci 64:466–475

    Article  CAS  Google Scholar 

  • Oslisly R, Doutrelepont H, Fontugne M, Forestier H, Giresse P, Hatte C, White L (2006) Premiers résultats pluridisciplinaires d’une stratigraphie vieille de plus de 40000 ans du site de maboué 5 dans la réserve de la lopé au Gabon. In: Maret P de, Cornelissen E, Ribot I. (Eds) Proceeding of the Congrès de l’UISPP.Union Internationale des Sciences Préhistoriques et Protohistoriques: Session 15. Préhistoire en Afrique = African Prehistory, 14. Liège (BEL), 2001/09/02–08. Oxford, Archaeopress, p. 189–198. Available at: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers17-01/010059677.pdf [Accessed on 30/04/2018]

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Saatchi S, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. P Natl Acad Sci USA 108:9899–9904

    Article  Google Scholar 

  • Sanaiotti TM, Martinelli LA, Victoria RL, Trumbore SE, Carmargo PB (2002) Past vegetation changes in Amazon savannas determined using carbon isotopes of soil organic matter. Biotropica 34:2–16

    Article  Google Scholar 

  • Schlüter T (2008) Geological atlas of Africa. Springer-Verlag, Berlin

    Google Scholar 

  • Shihan A, Hättenschwiler S, Milcu A, Joly F-X, Santonja M, Nathalie F (2017) Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol Fert Soils 53:171–185

    Article  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, twelfth edition. United States Department of Agriculture, Natural Resources Conservation Service. U.S. Government Printing Office, Washington, D.C.

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Terrasi F, De Cesare N, D’Onofrio A, Lubritto C, Marzaioli F, Passariello I, Rogalla D, Sabbarese C, Borriello G, Casa G, Palmieri A (2008) High precision 14C AMS at CIRCE. Nucl Instrum Meth B 266:2221–2224

    Article  CAS  Google Scholar 

  • Veenendaal EM, Torello-Raventos M, Feldpausch TR, Domingues TF, Gerard F, Schrodt F et al (2014) Structural, physiognomic and aboveground biomass variation in savanna-forest transition zones on three continents. How different are co-occurring savanna and forest formations? Biogeosci Discuss 11:4591–4636

    Article  Google Scholar 

  • Wedin DA, Tieszen LL, Dewey B, Pastor J (1995) Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76:1383–1392

    Article  Google Scholar 

  • White LJT (1995) Vegetation study—final report: République du Gabon, Project ECOFAC- Composante Gabon. ECOFAC, Libreville

    Google Scholar 

  • White LJT (2001) Forest-savanna dynamics and the origins of Marantaceae Forest in the Lopé Reserve, Gabon. In: Weber B, White LJT, Vedder A, Naughton-Treves L (eds) African rain forest ecology and conservation. Yale University Press, New Haven, pp 165–192

    Google Scholar 

  • Wynn J, Bird M (2007) C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Glob Change Biol 13:1–12

    Article  Google Scholar 

  • Wynn J, Bird M, Wong V (2005) Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochim Cosmochim Acta 69:1961–1973

    Article  CAS  Google Scholar 

  • Wynn J, Harden JW, Fries TL (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi basin. Geoderma 131:89–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Direction Générale de l’Environnement, the Agence Nationale des Parcs Nationaux for institutional and logistical support to this study and to the staff of the Station d’Etudes des Gorilles et Chimpanzés, particularly Dibakou J, for logistical, technical and field support during field work. We also acknowledge Luciano Spaccino for his skill in executing the isotope ratio determinations.

Funding

This work was funded by the ERC grant GHG Africa no. 247349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chiti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiti, T., Rey, A., Jeffery, K. et al. Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon. Biol Fertil Soils 54, 897–907 (2018). https://doi.org/10.1007/s00374-018-1313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1313-6

Keywords

Navigation