Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes

Abstract

Twenty strains of arbuscular mycorrhizal fungi (AMF), native to West Africa, and three commercial AMF, were evaluated for their protective effect against root-knot nematodes, Meloidogyne spp., in pots and field experiments in Benin. In pots, these strains were assessed in sterilized soil following inoculation of nematodes and in non-sterilized soil naturally infested with nematodes using tomato. The four strains showing greatest potential in suppressing nematode development were further assessed in the field with a relatively high natural infestation level of nematodes (155 per 100 cm3 soil) over a tomato–carrot double cropping. In the pot experiments, most native strains provided significant suppression of nematode multiplication and root galling, but in most cases the level of nematode control depends on either sterilized or non-sterilized soils. In the field experiments, application of AMF mostly resulted in significant suppression of nematode multiplication and root galling damage on both crops indicating that the AMF persists and remains protective against root-knot nematodes over two crop cycles. Field application of AMF increased tomato yields by 26% and carrot yields by over 300% compared with the non-AMF control treatments. This study demonstrates for the first time, the protective effect of indigenous West African AMF against root-knot nematodes on vegetables. The potential benefits of developing non-pesticide AMF-based pest management options for the intensive urban vegetable systems are evident.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant parasitic nematodes: a review. Biores Technol 74:35–47

    CAS  Article  Google Scholar 

  2. Assogba Komlan F (2007) Valorisation des déchets agro-industriels en agriculture urbaine dans le sud du Bénin: diagnostic, évaluation et perspectives. Ph.D. dissertation, University of Cocody, Ivory Coast

  3. Avio L, Bedini S, Pellegrino E, Giovannetti M (2008) Soil and inoculum infectivity evaluated during the early stage of mycorrhizal establishment. In: Graugaard S, Rasmussen H (eds) From production to application of arbuscular mycorrhizal fungi in agricultural systems: a multidisciplinary approach. Proceedings of COST 870 meeting organized. University of Aarhus, Slagelse, p 69

    Google Scholar 

  4. Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  5. Baimey H, Coyne D, Dagnenonbakin G, James B (2009) Plant-parasitic nematodes associated with vegetable crops in Benin: relationship with soil physico-chemical properties. Nematol Mediter 37:225–234

    Google Scholar 

  6. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Appl Soil Ecol 3:235–246

    Google Scholar 

  7. Bridge J, Page SLJ (1980) Estimation of root-knot nematode infestation levels on roots using a rating chart. Trop Pest Manage 26:296–298

    Article  Google Scholar 

  8. Calvet C, Pinochet J, Hernández Dorrego A, Estaún V, Camprubí A (2001) Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10:295–300

    Article  Google Scholar 

  9. Carling DE, Roncadori RW, Hussey RS (1989) Interactions of vesicular-arbuscular mycorrhizal fungi, root-knot nematode, and phosphorus fertilization on soybean. Plant Dis 73:730–733

    Article  Google Scholar 

  10. Carling DE, Roncadori RW, Hussey RS (1996) Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza 6:9–13

    Article  Google Scholar 

  11. Castillo P, Nico AI, Azcón-Aguilar C, Del Río RC, Calvet C, Jiménez-Díaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713

    Article  Google Scholar 

  12. Chweya JA, Eyzaguirre PB (1999) Introduction. In: Chweya JA, Eyzaguirre PB (eds) The biodiversity of traditional leafy vegetables. International Plant Genetic Resources Institute, Rome, Italy, pp 1–6

    Google Scholar 

  13. Cooper KM, Grandison GS (1986) Interaction of vesicular-arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Ann Appl Biol 108:555–566

    Article  Google Scholar 

  14. Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222

    Article  Google Scholar 

  15. Coyne DL, Nicol JM, Claudius-Cole B (2007) Practical plant nematology: a field and laboratory guide. SP-IPM Secretariat, international institute of tropical agriculture (IITA). Cotonou, Benin, p 82

    Google Scholar 

  16. de la Peña E, Echeverría SR, van der Putten HH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    Article  PubMed  Google Scholar 

  17. Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204

    CAS  Article  PubMed  Google Scholar 

  18. Dinham B (2003) Growing vegetables in developing countries for local urban populations and export markets: problems confronting small-scale producers. Pest Manag Sci 59:575–582

    CAS  Article  PubMed  Google Scholar 

  19. Elsen A, Beeterens R, Swennen R, De Waele D (2003) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376

    Article  Google Scholar 

  20. EU (2005) Part 1 commission staff working document: monitoring of pesticide residues in products of plant origin in the European Union, Norway, Iceland and Liechtenstein 2005. Available at: http://ec.europa.eu/food/fvo/specialreports/pesticide_residues/report_2005_en.pdf. Accessed 16 August 2010

  21. Fanou A, Glitho M, Baimey H, Sagbohan J (2005) Etude comparée des pesticides botaniques sur les organismes nuisibles des cultures maraîchères (carotte, oignon et Gboma) dans les centres maraîchers d’Agron, de Sokotomey, de Grand-Popo et d’Adjohoun. In: Adjanohoun A, Bankolé C, Hodonou H, Igué K, Agbo BP, Ganglo J, Sagbohan J, Matthess A (eds) Actes de l’Atelier Scientifique National 5. INRAB, Cotonou, pp 289–305

    Google Scholar 

  22. Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    Article  PubMed  Google Scholar 

  23. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring VAM infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  24. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York, p 680

    Google Scholar 

  25. Herrera-Peraza RA, Hamel C, Fernández F, Ferrer RL, Furrazola E (2010) Soil-strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza. doi:10.1007/s00572-010-0322-6, Published online on 16 June 2010

    PubMed  Google Scholar 

  26. Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  27. Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumot M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant Soil 196:27–35

    CAS  Article  Google Scholar 

  28. James B, Atcha-Ahowé C, Godonou I, Baimey H, Goergen H, Sikirou R, Toko M (2010) Integrated pest management in vegetable production: a guide for extension workers in West Africa. International Institute of Tropical Agriculture, Ibadan, p 120

    Google Scholar 

  29. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  30. Kerry BR (1992) The biological control of soil-borne pests and diseases. In: Van Lanteren JC, Minks AK, de Ponti OMB (eds) Biological control and integrated crop protection: towards environmentally safer agriculture. Proceedings of an international conference organized. IOBC/WPRS, Veldhoven

    Google Scholar 

  31. Kerry BR, Hominick WM (2002) Biological control. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 483–509

    Google Scholar 

  32. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  33. Koron D (2008) The influence of biofumigation on mycorrhizal fungi and growth of strawberries. In: Graugaard S, Rasmussen H (eds) From production to application of arbuscular mycorrhizal fungi in agricultural systems: a multidisciplinary approach. Proceedings of COST 870 meeting organized. University of Aarhus, Slagelse, pp 81–84

    Google Scholar 

  34. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  35. Lekberg Y, Koide RT, Twomlow SJ (2008) Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. Biol Fertil Soils 44:917–923

    Article  Google Scholar 

  36. MAEP (2010) Rendement des Principales Cultures par Année et par Commune (Kg/Ha). Commune Allada, Culture Tomate, Campagne 2005–2009. Service Statistique/ DPP/MAEP, Benin. Available at: http://www.countrystat.org/ben/cont/pxwebquery/ma/053spd080/fr. Accessed 23 August 2010

  37. Masadeh B, von Alten H, Grunewaldt-Stoecker G, Sikora RA (2004) Biocontrol of root-knot nematodes using the arbuscular mycorrhizal fungus Glomus intraradices and the antagonist Trichoderma viride in two tomato cultivars differing in their suitability as hosts for the nematodes. J Plant Dis Prot 111:322–333

    Google Scholar 

  38. Neuenschwander P (2004) Harnessing nature in Africa: biological pest control can benefit the pocket, health and the environment. Nature 432:801–802

    CAS  Article  PubMed  Google Scholar 

  39. Ntow WJ, Gijzen HJ, Kelderman P, Drechsel P (2006) Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag Sci 62:356–365

    CAS  Article  PubMed  Google Scholar 

  40. Ocampo JA, Hayman DS (1980) Effects of pesticides on mycorrhiza in field grown barley, maize and potatoes. Trans Br Mycol Soc 74:413–416

    CAS  Article  Google Scholar 

  41. Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  Article  PubMed  Google Scholar 

  42. Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  43. Rosendahl I, Laabs V, James BD, Atcha-Ahowé C, Agbotse SK, Kone D, Kogo A, Salawu R, Glitho IA (2008) Living with pesticides: a vegetable case study. Technical report, Systemwide Program on Integrated Pest Management (SP/IPM), Cotonou, Benin. p. 41

  44. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  45. Saleh H, Sikora RA (1984) Relationship between Glomus fasciculatum root colonization of cotton and its effect on Meloidogyne incognita. Nematologica 30:230–237

    Article  Google Scholar 

  46. Schwob I, Ducher M, Coudret A (1999) Effects of climatic factors on native arbuscular mycorrhizae and Meloidogyne exigua in a Brazilian rubber tree (Hevea brasiliensis) plantation. Plant Pathol 48:19–25

    Article  Google Scholar 

  47. Sharon E, Chet I, Viterbo A, Bar-Eyal M, Nagan H, Samuels GJ, Spiegel Y (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258

    Article  Google Scholar 

  48. Sikora RA (1990) Management of the antagonistic potential in soils of agro-ecosystems for nematode control. In: Proceedings of the 2nd International Congress in Nematology, Veldhoven, The Netherlands. pp. 249–256

  49. Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the control of plant parasitic nematodes. Annu Rev Phytopathol 12:245–270

    Article  Google Scholar 

  50. Sikora RA, Fernàndez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 319–392

    Google Scholar 

  51. Sikora RA, Schönbeck F (1975) Effect of vesicular-arbuscular mycorrhizae, Endogone mosseae on the population dynamics of the root-knot nematodes Meloidogyne incognita and M. hapla. In: Proceedings of the 8th International Congress of Plant Protection. Moscou. pp. 158–166

  52. Sikora RA, Pocasangre L, Felde AZ, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46:15–23

    Article  Google Scholar 

  53. StatSoft Inc. (2001) Statistica release 6. Statsoft. Tulsa, USA

  54. Steinberg PD, Rilling MC (2003) Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 35:191–194

    CAS  Article  Google Scholar 

  55. Stirling GR (1991) Biological control of plant parasitic nematodes: progress, problems and prospects. CAB International, Wallingford, p 282

    Google Scholar 

  56. Tchabi A (2008). Arbuscular mycorrhizal fungi in the sub-Saharan savannas of Benin and their association with yam (Dioscorea spp.): potential of yam growth promotion and reduction of nematode infestation. Dissertation, Universität Basel

  57. Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological. Mycorrhiza 18:181–195

    Article  PubMed  Google Scholar 

  58. Tchabi A, Burger S, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2009) Promiscuous arbuscular mycorrhizal symbiosis of yam (Dioscorea spp.), a key staple crop in West Africa. Mycorrhiza 19:375–392

    Article  PubMed  Google Scholar 

  59. Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2010) Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Appl Soil Ecol 45:92–100

    Article  Google Scholar 

  60. Waceke JW, Waudo SW, Sikora R (2001) Response of Meloidogyne hapla to mycorrhiza fungi inoculation on pyrethrum. Afric J Sci Technol 2:63–70

    Google Scholar 

  61. Waceke JW, Waudo SW, Sikora R (2002) Effect of inorganic phosphatic fertilizers on the efficacy of an arbuscular mycorrhiza fungus against a root-knot nematode on pyrethrum. Int J Pest Manag 48:307–313

    CAS  Article  Google Scholar 

  62. Zhang L, Zhang J, Christie P, Li X (2008) Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biol Fertil Soils 45:205–212

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Vlaamse Interuniversitaire Raad (VLIR/Belgium) for support in the Ph.D. scholarship framework allocated to the lead author. We are grateful to Prof. Andres Wiemken, Dr. Fritz Oehl and Dr. Atti Tchabi for generating and identifying the native AMF strains used in the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antoine Affokpon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Affokpon, A., Coyne, D.L., Lawouin, L. et al. Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes. Biol Fertil Soils 47, 207–217 (2011). https://doi.org/10.1007/s00374-010-0525-1

Download citation

Keywords

  • Benin
  • Beneficial organisms
  • Biodiversity
  • Biological control
  • Meloidogyne spp.
  • Sustainable agriculture