Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity


Let G be a graph, \(\nu \) the order of G and k a positive integer such that \(k\le (\nu -2)/2\). Then G is said to be k-extendable if it has a matching of size k and every matching of size k extends to a perfect matching of G. A graph G is Hamiltonian if it contains a Hamiltonian cycle. A graph G is Hamiltonian-connected if, for any two of its vertices, it contains a spanning path joining the two vertices. In this paper, we discuss k-extendable nonbipartite graphs with \(\kappa (G)\ge 2k+r\) where \(k\ge 1\) and \(r\ge 0\). It is shown that if \(\nu \le 6k+2r\), then G is Hamiltonian; and if \(\nu > 6k+2r\), then G has a longest cycle C such that \(|V(C)|\ge 6k+2r\); and if \(\nu <6k+2r\), then G is Hamiltonian-connected; and if \(\nu \ge 6k+2r\), then for each pair of vertices \(z_1\) and \(z_2\) of G, there is a path P of G joining \(z_1\) and \(z_2\) such that \(|V(P)|\ge 6k+2r-2\). All the bounds are sharp and all results can be extended to 2k-factor-critical graphs.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)

    Google Scholar 

  2. 2.

    Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discrete Math. 2(2), 111–113 (1972)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2(1), 69–81 (1952)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Favaron, O.: On \(k\)-factor-critical graphs. Discuss. Math. Graph Theory 16, 41–51 (1996)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Gallai, T.: Neuer Beweis eines Tutte’schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 135–139 (1963)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Gan, Z., Lou, D.: Long cycles in \(n\)-extendable bipartite graphs. Ars Combin. 144, 91–105 (2019)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Gan, Z., Lou, D.: Hamilton paths in \(n\)-extendable bipartite graphs. Ars Combin (accepted)

  8. 8.

    Kawarabayashi, K., Ota, K., Saito, A.: Hamiltonian cycles in \(n\)-extendable graphs. J. Graph Theory 40, 75–82 (2002)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Li, Y., Lou, D.: Hamilton cycles in \(n\)-extendable bipartite graphs. Ars Combin. 139, 3–18 (2018)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Lou, D., Yu, Q.: Connectivity of \(k\)-extendable graphs with large \(k\). Discrete Appl. Math. 136, 55–61 (2004)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Lovász, L.: On the structure of factorizable graphs. Acta Math. Acad. Sci. Hungar. 23, 179–195 (1972)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Maschlanka, P., Volkmann, L.: Independence number in \(n\)-extendable graphs. Discrete Math. 154, 167–178 (1996)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Plummer, M.D.: On \(n\)-extendable graphs. Discrete Math. 31, 201–210 (1980)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Plummer, M.D.: Recent Progress in Matching Extension, Building Bridges, pp. 427–454. Springer, Berlin (2008)

    Google Scholar 

  15. 15.

    Yu, Q.: Characterizations of various matchings in graphs. Australas. J. Combin. 7, 55–64 (1993)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Zhang, Z.-B., Li, Y., Lou, D.: \(M\)-alternating Hamilton paths and \(M\)-alternating Hamilton cycles. Discrete Math. 309, 3385–3392 (2009)

    MathSciNet  Article  Google Scholar 

Download references


The authors are grateful to the referees for their careful reading and constructive suggestions that improved the quality of the paper greatly.

Author information



Corresponding author

Correspondence to Dingjun Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yanping Xu is co-first author.

Zhiyong Gan was supported by the State Scholarship Fund awarded by the China Scholarship Council (Grant number 201906755002), and the Scholarship of South China Normal University for Studying Abroad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., Lou, D. & Xu, Y. Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity. Graphs and Combinatorics 36, 1043–1058 (2020). https://doi.org/10.1007/s00373-020-02164-x

Download citation


  • k-Extendable
  • Nonbipartite graph
  • Long cycle
  • Hamiltonian-connected
  • k-factor-critical

Mathematics Subject Classification

  • 05C70
  • 05C38