Facial Rainbow Edge-Coloring of Plane Graphs

Original Paper
  • 16 Downloads

Abstract

An edge-coloring of a loopless plane graph G is a facial rainbow edge-coloring if any two edges of G contained in the same facial path have distinct colors. The facial rainbow edge-number of a graph G, denoted \(\mathrm {erb}(G)\), is the minimum number of colors that are necessary in any facial rainbow edge-coloring. In the present note we prove that \(\mathrm {erb}(G) \le \lfloor \frac{3}{2} (L(G) + 1) \rfloor \) for all connected loopless plane graphs, where L(G) is the length of the longest facial path of G. This bound is tight. For the family of all 3-connected plane graphs this bound is improved to \(L(G) + 2\). For trees there is \(\mathrm {erb}(G) \le \lfloor \frac{3}{2} L(G) \rfloor \) which is also tight. Moreover, if G is a tree with \(L(G) \ge 7\) and without degree two vertices, then \(\mathrm {erb}(G) = L(G)\).

Keywords

Cyclic coloring Rainbow coloring Plane graphs 

Notes

Acknowledgements

This work was supported by the Slovak VEGA Grant 1/0368/16 and by the Slovak Research and Development Agency under the Contract No. APVV-15-0116.

References

  1. 1.
    Amini, O., Esperet, L., van den Heuvel, J.: A unified approach to distance-two colouring of planar graphs. SODA 2009, 273–282 (2009)MathSciNetGoogle Scholar
  2. 2.
    Azarija, J., Erman, R., Král’, D., Krnc, M., Stacho, L.: Cyclic colorings of plane graphs with independent faces. Eur. J. Comb. 33, 294–301 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Borodin, O.V.: Cyclic coloring of plane graphs. Discrete Math. 100, 281–289 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Borodin, O.V.: Colorings of plane graphs: a survey. Discrete Math. 313, 517–539 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chartrand, G., Zhang, P.: Chromatic graph theory, Discrete mathematics and its applications. CRC Press, Taylor & Francis Group, Boca Raton (2009)Google Scholar
  6. 6.
    Czap, J., Jendrol’, S.: Facially-constrained colorings of plane graphs: a survey. Discrete Math. 340, 2691–2703 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dvořák, Z., Hebdige, M., Hlásek, F., Král’, D.: Cyclic coloring of plane graphs with maximum face size 16 and 17 (2016). arXiv:1603.06722v1 [math.CO]
  8. 8.
    Enomoto, H., Horňák, M.: A general upper bound for the cyclic chromatic number of 3-connected plane graphs. J. Graph Theory 62, 1–25 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Enomoto, H., Horňák, M., Jendrol’, S.: Cyclic chromatic number of 3-connected plane graphs. SIAM J. Discrete Math. 14, 121–137 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Erdős, P., Simonovits, M., Sós, V.T.: Anti-Ramsey theorems, Infinite and finite sets, Vol. II, edited by A. Hajnal, R. Rado, and V. T. Sós. Colloq. Math. Soc. János Bolyai 10, 633–643 (1975)Google Scholar
  11. 11.
    Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalization of Ramsey theory: a survey. Graphs Comb. 26, 1–30 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gross, J.L., Tucker, T.W.: Topological Graph Theory. Dover Publications, New York (2001)MATHGoogle Scholar
  13. 13.
    Havet, F., Sereni, J.-S., Škrekovski, R.: 3-facial coloring of plane graphs. SIAM J. Discrete Math. 22, 231–247 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hebdige, M., Král’, D.: Third case of the cyclic coloring conjecture. SIAM J. Discrete Math. 30, 525–548 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Horňák, M., Jendrol’, S.: On a conjecture by Plummer and Toft. J. Graph Theory 30, 177–189 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Horňák, M., Zlámalová, J.: Another step towards proving a conjecture by Plummer and Toft. Discrete Math. 310, 442–452 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jendrol’, S., Kekeňáková, L.: Facial rainbow colorings of plane graphs. Discuss. Math. Graph Theory,  https://doi.org/10.7151/dmgt.2047
  18. 18.
    Ore, O., Plummer, M.D.: Cyclic coloration of plane graphs. In: Tutte, W.T. (ed.) Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, May 1968). Academic, Cambridge (1969)Google Scholar
  19. 19.
    Plummer, M.D., Toft, B.: Cyclic coloration of 3-polytopes. J. Graph Theory 11, 507–515 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sanders, D.P., Zhao, Y.: A new bound on the cyclic chromatic number. J. Comb. Theory Ser. B 83, 102–111 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class one. J. Comb. Theory Ser. B 83, 201–212 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Phys. 28, 148–151 (1949)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Vizing, V.G.: Critical graphs with given chromatic class. Metody Diskret. Analiz. 3, 25–30 (1964)Google Scholar
  24. 24.
    West, D.: Introduction to graph theory, 2nd edn. Prentice hall, Upper Saddle River (2001)Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, Faculty of ScienceP. J. Šafárik UniversityKosiceSlovakia

Personalised recommendations