Skip to main content
Log in

Facial Rainbow Edge-Coloring of Plane Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

An edge-coloring of a loopless plane graph G is a facial rainbow edge-coloring if any two edges of G contained in the same facial path have distinct colors. The facial rainbow edge-number of a graph G, denoted \(\mathrm {erb}(G)\), is the minimum number of colors that are necessary in any facial rainbow edge-coloring. In the present note we prove that \(\mathrm {erb}(G) \le \lfloor \frac{3}{2} (L(G) + 1) \rfloor \) for all connected loopless plane graphs, where L(G) is the length of the longest facial path of G. This bound is tight. For the family of all 3-connected plane graphs this bound is improved to \(L(G) + 2\). For trees there is \(\mathrm {erb}(G) \le \lfloor \frac{3}{2} L(G) \rfloor \) which is also tight. Moreover, if G is a tree with \(L(G) \ge 7\) and without degree two vertices, then \(\mathrm {erb}(G) = L(G)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amini, O., Esperet, L., van den Heuvel, J.: A unified approach to distance-two colouring of planar graphs. SODA 2009, 273–282 (2009)

    MathSciNet  Google Scholar 

  2. Azarija, J., Erman, R., Král’, D., Krnc, M., Stacho, L.: Cyclic colorings of plane graphs with independent faces. Eur. J. Comb. 33, 294–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin, O.V.: Cyclic coloring of plane graphs. Discrete Math. 100, 281–289 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borodin, O.V.: Colorings of plane graphs: a survey. Discrete Math. 313, 517–539 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartrand, G., Zhang, P.: Chromatic graph theory, Discrete mathematics and its applications. CRC Press, Taylor & Francis Group, Boca Raton (2009)

    Google Scholar 

  6. Czap, J., Jendrol’, S.: Facially-constrained colorings of plane graphs: a survey. Discrete Math. 340, 2691–2703 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dvořák, Z., Hebdige, M., Hlásek, F., Král’, D.: Cyclic coloring of plane graphs with maximum face size 16 and 17 (2016). arXiv:1603.06722v1 [math.CO]

  8. Enomoto, H., Horňák, M.: A general upper bound for the cyclic chromatic number of 3-connected plane graphs. J. Graph Theory 62, 1–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Enomoto, H., Horňák, M., Jendrol’, S.: Cyclic chromatic number of 3-connected plane graphs. SIAM J. Discrete Math. 14, 121–137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, P., Simonovits, M., Sós, V.T.: Anti-Ramsey theorems, Infinite and finite sets, Vol. II, edited by A. Hajnal, R. Rado, and V. T. Sós. Colloq. Math. Soc. János Bolyai 10, 633–643 (1975)

    Google Scholar 

  11. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalization of Ramsey theory: a survey. Graphs Comb. 26, 1–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Dover Publications, New York (2001)

    MATH  Google Scholar 

  13. Havet, F., Sereni, J.-S., Škrekovski, R.: 3-facial coloring of plane graphs. SIAM J. Discrete Math. 22, 231–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hebdige, M., Král’, D.: Third case of the cyclic coloring conjecture. SIAM J. Discrete Math. 30, 525–548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horňák, M., Jendrol’, S.: On a conjecture by Plummer and Toft. J. Graph Theory 30, 177–189 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horňák, M., Zlámalová, J.: Another step towards proving a conjecture by Plummer and Toft. Discrete Math. 310, 442–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jendrol’, S., Kekeňáková, L.: Facial rainbow colorings of plane graphs. Discuss. Math. Graph Theory, https://doi.org/10.7151/dmgt.2047

  18. Ore, O., Plummer, M.D.: Cyclic coloration of plane graphs. In: Tutte, W.T. (ed.) Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, May 1968). Academic, Cambridge (1969)

  19. Plummer, M.D., Toft, B.: Cyclic coloration of 3-polytopes. J. Graph Theory 11, 507–515 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sanders, D.P., Zhao, Y.: A new bound on the cyclic chromatic number. J. Comb. Theory Ser. B 83, 102–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class one. J. Comb. Theory Ser. B 83, 201–212 (2001)

    Article  MATH  Google Scholar 

  22. Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Phys. 28, 148–151 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vizing, V.G.: Critical graphs with given chromatic class. Metody Diskret. Analiz. 3, 25–30 (1964)

    Google Scholar 

  24. West, D.: Introduction to graph theory, 2nd edn. Prentice hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak VEGA Grant 1/0368/16 and by the Slovak Research and Development Agency under the Contract No. APVV-15-0116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Jendrol’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jendrol’, S. Facial Rainbow Edge-Coloring of Plane Graphs. Graphs and Combinatorics 34, 669–676 (2018). https://doi.org/10.1007/s00373-018-1904-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1904-x

Keywords

Navigation