Abstract
This is the story of a man named Vašek.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Aardal, K.: 7397-city traveling salesman instance solved—another layer of icing on the cake. Optima 45, 7–8 (1995)
Aardal, K.: TSP Cake. Optima 61, 20–21 (1999)
Althaus, E., Polzin, T., Daneshmand, S. V.: Improving linear programming approaches for the Steiner tree problem. Lect. Notes Comput. Sci. 2647, 1–14 (2003)
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (a preliminary report). DIMACS Technical Report 95-05. DIMACS, Rutgers University, New Brunswick, NJ, USA, 1995
Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)
Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. Math. Program. Study 8, 24–34 (1978)
Bauer, D., Broersma, H. J., Veldman, H. J.: Not every 2-tough graph is Hamiltonian. Discrete Appl. Math. 99, 1–3 (2000)
Berge, C.: Some classes of perfect graphs. In: Six papers on Graph Theory, pp. 1–21. Indian Stastical Institute, Calcutta (1963)
Booth, K.S., Lueker, G. S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)
Bondy, J. A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)
Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2}\}\) -Chvátal–Gomory cuts. Math. Program. 74, 221–235 (1996)
Caprara, A., Fischetti, M., Letchford, A. N.: On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56 (2000)
Chvátal, V.: On finite and countable rigid graphs and tournaments. Comment. Math. Univ. Carol. 6, 429–438 (1965)
Chvátal, V.: The smallest triangle-free 4-chromatic 4-regular graph. J. Comb. Theory 9, 93–94 (1970)
Chvátal, V.: Hypergraphs and Ramseyian theorems. Proc. Am. Math. Soc. 27, 434–440 (1971)
Chvátal, V.: On Hamilton’s ideals. J. Comb. Theory B 12, 163–168 (1972)
Chvátal, V.: Monochromatic paths in edge-colored graphs. J. Comb. Theory B 13, 69–70 (1972)
Chvátal, V.: Edmonds polytopes and weakly Hamiltonian graphs. Math. Program. 5, 29–40 (1973)
Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)
Chvátal, V.: Flip-flops in hypoHamiltonian graphs. Can. Math. Bull. 16, 33–41 (1973)
Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–218 (1973)
Chvátal V.: Intersecting families of edges in hypergraphs having the hereditary property. Hypergraph Seminar Proceedings of the First Working Seminar, Ohio State University, Columbus, Ohio. Lect. Notes Math. 411, 61–68 (1974)
Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory B 18, 138–154 (1975)
Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory B 18, 39–41 (1975)
Chvátal, V.: Some linear programming aspects of combinatorics. Congr. Numer. 13, 2–30 (1975)
Chvátal, V.: Determining the stability number of a graph. SIAM J. Comput. 6, 643–662 (1977)
Chvátal V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979)
Chvátal V.: Hard knapsack problems. Oper. Res. 28, 1402–1411 (1980)
Chvátal V.: Linear Programming. W.H. Freeman, New York (1983)
Chvátal, V.: Cutting-plane proofs and the stability number of a graph. Report 84326, University of Bonn, pp. 10 (1984)
Chvátal, V.: Notes on perfect graphs. In: Pulleyblank WR (ed.) Progress in Combinatorial Optimization, pp. 107–115. Academic, New York (1984)
Chvátal, V.: In praise of Claude Berge. Discrete Math. 165/166, 3–9 (1997)
Chvátal, V.: Star-cutsets and perfect graphs. J. Comb. Theory B 39, 189–199 (1985)
Chvátal, V.: Claude Berge 5.6.1926-30.6.2002. Graphs Comb. 19, 1–6 (2003)
Chvátal, V., Cook, W.: The discipline number of a graph. Discrete Math. 86, 191–198 (1990)
Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115, 455–499 (1989)
Chvátal, V., Erdős P.: A note on Hamiltonian circuits. Discrete Math. 2, 111–113 (1972)
Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. I. Diagonal numbers. Periodica Mathematica Hungarica. J. János Bolyai Math. Soc. 3, 115–124 (1973)
Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. II. Small diagonal numbers. Proc. Am. Math. Soc. 32, 389–394 (1972)
Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. III. Small off-diagonal numbers. Pacific J. Math. 41, 335–345 (1972)
Chvátal, V., Klarner, D. A., Knuth, D. E.: Selected Combinatorial Research Problems. Computer Science Department, Stanford University, CS-TR-72-292, 1972
Chvátal, V., Lovász, L.: Every directed graph has a semi-kernel. Hypergraph Seminar Proceedings of the First Working Seminar, Ohio State University, Columbus, Ohio. Lect. Notes Math. 411, 175 (1974)
Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE Computer Society Press, Washington (1992)
Chvátal, V., Sbihi, N.: Bull-free Berge graphs are perfect. Graphs Combin. 3, 127–139 (1987)
Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. Assoc. Comput. Mach. 35, 759–768 (1988)
Cook, S. A.: The complexity of theorem-proving procedures. 3rd ACM Symposium on Theory of Computing, pp. 151–158, 1970
Crowder, H., Padberg, M. W.: Solving large-scale symmetric travelling salesman problems to optimality. Manage. Sci. 26, 495–509 (1980)
Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)
Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)
Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)
Espinoza, D. G.: On Linear programming, Integer Programming and Cutting Planes. Ph.D. Thesis. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA, 2006
Fleischer, L., Tardos, É.: Separating maximally violated comb inequalities in planar graphs. Math. Oper. Res. 24, 130–148 (1999)
Gomory, R. E.: An algorithm for integer solutions to linear programs. Princeton IBM Math Report, 1958
Gomory, R. E.: The traveling salesman problem. In: Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, pp. 93–121. IBM, White Plains (1966)
Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Study 12, 61–77 (1980)
Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 189–197 (1981)
Grötschel, M., Padberg, M. W.: On the symmetric traveling salesman problem. I: Inequalities. Math. Program. 16, 265–280 (1979)
Hayward, R.: Weakly triangulated graphs. J. Comb. Theory B 39, 200–208 (1985)
Hayward, R.: The story of perfectly orderable graphs. Graphs Comb. (this volume)
Hoàng, C.: Some properties of minimal imperfect graphs. Discrete Math. 160, 165–175 (1996)
Hong, S.: A Linear Programming Approach for the Traveling Salesman Problem. Ph.D. Thesis. The Johns Hopkins University, Baltimore, MD, USA, 1972
Karp, R. M.: Reducibility among combinatorial problems. In: Miller, R. E., et al. (eds.) Complexity of Computer Computations. (1972)
Khachian, L. G.: A polynomial time algorithm in linear programming. Doklady Akademiiia Nauk SSSR 244, 1093–1096 (1980)
Letchford, A. N.: Separating a superclass of comb inequalities in planar graphs. Math. Oper. Res. 25, 443–454 (2000)
Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)
Lovász, L.: A characterization of perfect graphs. J. Comb. Theory B 13, 95–98 (1972)
Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)
Reed, B.: Skew partitions in perfect graphs. Discrete Appl. Math. (in press)
Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)
Reinelt, G., Wenger, K. M.: Maximally violated mod-p cuts for the capacitated vehicle-routing problem. INFORMS J. Comput. 18, 466–479 (2006)
Padberg, M.: Plenary Lecture, XVI International Symposium on Mathematical Programming, Lausanne, August (1997)
Shannon, C. E.: The zero error capacity of a noisy channel. Institute of Radio Engineers. Trans. Inf. Theory IT-2, 8–19 (1956)
Tucker, A.: A structure theorem for the consecutive 1’s property. J. Comb. Theory B 12, 153–162 (1972)
Underground, P.: Graphs with Hamiltonian squares. Discrete Math. 21, 323 (1978)
Yamamoto, Y., Kubo, M.: Invitation to the Traveling Salesman Problem. Asakura, Tokyo, 1997 (in Japanese)