Computer-aided parametric prosthetic socket design based on real-time soft tissue deformation and an inverse approach

Abstract

The prosthetic socket provides the critical interface between the prosthetic device and the patient’s residual limb. Since each stump is unique in terms of morphology and mechanics, each socket should be patient specific. Computer-aided design solutions have been proposed in the literature. However, there is a lack of an efficient solution able to modify local information based on soft tissue deformation feedback to enhance the design process. The objective of the present work was to develop and evaluate a computer-aided design approach with real-time soft tissue deformation feedback and an inverse approach to optimize the stump–socket interaction. A computer-aided parametric socket design workflow was proposed. Soft tissue deformation was performed using a novel formulation of the mass-spring system. An inverse approach was proposed to estimate and optimize the stump–socket interaction. An interactive parametric design tool was also developed and evaluated. The proposed approach was applied on a CT-based dataset. Finally, the obtained design outcomes were compared with FE simulation outcomes for evaluation purpose. As results, a virtual socket prototype of the CT-based stump model was designed and illustrated by an interactive process. The comparison of stump–socket interaction behavior with FE simulation outcomes showed a very good agreement with a pressure absolute deviation error ranging from 1.44 ± 2.13 to 3.66 ± 4.56 kPa. Moreover, the contact pressures are below the pain-threshold curves, confirming the comfortability of the designed sockets according to the predefined criteria. The present study proposed a computer-aided socket design solution to locally enhance the socket geometry and mechanics. This opens new avenues to increase the design accuracy, reduce the design cost and give the involved patient a geometrically and mechanically fitted socket device. As perspectives, this process will be integrated with our available visual sensor fusion toward a complete computer-aided socket design system for lower limb prosthetic design and fabrication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Paterno, L., Ibrahimi, M., Gruppioni, E., et al.: Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE Trans. Biomed. Eng. 65, 1996–2010 (2018). https://doi.org/10.1109/tbme.2017.2775100

    Article  Google Scholar 

  2. 2.

    Pezzin, L.E., Dillingham, T.R., MacKenzie, E.J., et al.: Use and satisfaction with prosthetic limb devices and related services. Arch Phys. Med. Rehabil. 85, 723–729 (2004). https://doi.org/10.1016/j.apmr.2003.06.002

    Article  Google Scholar 

  3. 3.

    Hsu, E., Cohen, S.P.: Postamputation pain: epidemiology, mechanisms, and treatment. J. Pain Res. 6, 121–136 (2013). https://doi.org/10.2147/JPR.S32299

    Article  Google Scholar 

  4. 4.

    McGimpsey, G., Bradford, T.: Limb Prosthetics Services and Devices. Bioengineering Institute Center for Neuroprosthetics, Worcester Polytechnic Institution, Worcester, MA (2010)

    Google Scholar 

  5. 5.

    Rogers, B., Bosker, G., Faustini, M., Walden, G., Neptune, R.R., Crawford, R.: Case report: variably compliant transtibial prosthetic socket fabricated using solid freeform fabrication. JPO J. Prosthet. Orthot. 20(1), 1–7 (2008). https://doi.org/10.1097/JPO.0b013e31815ea839

    Article  Google Scholar 

  6. 6.

    Faustimi, M.C.: Modeling and fabrication of prosthetic sockets using selective laser sintering, PhD Thesis, The University of Texas at Austin, p 122 (2004)

  7. 7.

    Singh, D., Pandey, R.: A new proposed method to reverse engineer a residual limb for prosthetic socket—procedure, advantages and challenges. Appl. Mech. Mater. 852, 558–563 (2016). https://doi.org/10.4028/www.scientific.net/amm.852.558

    Article  Google Scholar 

  8. 8.

    Hsu, L.H., Huang, G.F., Lu, C.T., Hong, D.Y., Liu, S.H.: The development of a rapid prototyping prosthetic socket coated with a resin layer for transtibial amputees. Prosthet. Orthot. Int. 34, 37–45 (2010)

    Article  Google Scholar 

  9. 9.

    Regazzoni, D., Vitali, A., Rizzi, C., Colombo, G.: A virtual platform for lower limb prosthesis design and assessment. DHM and posturography. Elseiver, Amsterdam (2019)

    Google Scholar 

  10. 10.

    Tzeng, M.-J., Hsu, L.-H., Chang, S.-H.: Development and evaluation of a CAD/3DP process for transtibial socket fabrication. Biomed. Eng. Appl. Basis Commun. 27(5), 1550044 (2015). https://doi.org/10.4015/S1016237215500441

    Article  Google Scholar 

  11. 11.

    Chuang, W.-C., Hsu, L.-H., Huang, G.-F., Lai, C.-W.: Computer-aided grid-editing system for supporting the design of rapid prototyping transtibial sockets. Des. Manuf. (2009). https://doi.org/10.1115/imece2009-10758

  12. 12.

    Chuang, W.-C., Hsieh, H.-H., Hsu, L.-H., Ho, H.-J., Chen, J.-T., Tzeng, M.-J.: A system for supporting the design of total surface bearing transtibial sockets. Comput.-Aided Des. Appl. 8(5), 723–734 (2011). https://doi.org/10.3722/cadaps.2011.723-734

    Article  Google Scholar 

  13. 13.

    Colombo, G., Facoetti, G., Morotti, R., Rizzi, C.: Physically based modelling and simulation to innovate socket design. Comput.-Aided Des. Appl. 8(4), 617–631 (2011). https://doi.org/10.3722/cadaps.2011.617-631

    Article  Google Scholar 

  14. 14.

    Barbi, J., James, D.L.: Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In: Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '07), pp. 171–180 (2007).

  15. 15.

    Mcneely W. A., Puterbaugh K. D., Troy J. J.: Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of ACM SIGGRAPH 99. ACM, pp. 401–408 (1999)

  16. 16.

    Steer, J.W., Worsley, P.R., Browne, M., Dickinson, A.S.: Predictive prosthetic socket design: part 1—population-based evaluation of transtibial prosthetic sockets by FEA-driven surrogate modelling. Biomech. Model. Mechanobiol. (2019). https://doi.org/10.1007/s10237-019-01195-5

    Article  Google Scholar 

  17. 17.

    Steer, J.W., Grudniewski, P.A., Browne, M., Worsley, P.R., Sobey, A.J., Dickinson, A.S.: Predictive prosthetic socket design: part 2—generating person-specific candidate designs using multi-objective genetic algorithms. Biomech. Model. Mechanobiol. (2019). https://doi.org/10.1007/s10237-019-01258-7

    Article  Google Scholar 

  18. 18.

    Sanders, J.E., McLean, J.B., Cagle, J.C., Gardner, D.W., Allyn, K.J.: Technical note: computer-manufactured inserts for prosthetic sockets. Med. Eng. Phys. 38(8), 801–806 (2016)

    Article  Google Scholar 

  19. 19.

    Sengeh, D.M., Herr, H.: A variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. JPO J. Prosthet. Orthot. 25(3), 129–137 (2013). https://doi.org/10.1097/JPO.0b013e31829be19c

    Article  Google Scholar 

  20. 20.

    Caspers, C.A.: Dynamically-activated variable response socket with hydraulic pump, US Patent, US20100312360A1 (2010)

  21. 21.

    Frillici, F.S., Rissone, P., Rizzi, C., Rotini, F.: The role of simulation tools to innovate the prosthesis socket design process. In: Pham, D.T., Eldukhri, E.E., Soroka, A.J. (eds.) Intelligent production machines and system, pp. 612–619. Whittles Publishing, Dunbeath (2008)

    Google Scholar 

  22. 22.

    Ballit, A., Mougharbel, I., Ghaziri, H., Dao, T.T.: Fast soft tissue deformation and stump–socket interaction toward a computer-aided design system for lower limb prostheses. Innov. Res. BioMed. Eng. (IRBM). (2020). https://doi.org/10.1016/j.irbm.2020.02.003. (in press)

    Article  Google Scholar 

  23. 23.

    Golec, K., Palierne, J.-F., Zara, F., Nicolle, S., Damiand, G.: Hybrid 3D mass-spring system for simulation of isotropic materials with any Poisson’s ratio. Vis. Comput. 36(4), 809–825 (2020). https://doi.org/10.1007/s00371-019-01663-0

    Article  Google Scholar 

  24. 24.

    Tang, J., McGrath, M., Laszczak, P., et al.: Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture. Med. Eng. Phys. 37, 1 (2015)

    Article  Google Scholar 

  25. 25.

    Colombo, G., et al.: Automatic below-knee prosthesis socket design: a preliminary approach, pp. 75–81. Springer, Switzerland (2016)

    Google Scholar 

  26. 26.

    Lee, W.C., et al.: Regional differences in pain threshold and tolerance of the transtibial residual limb: including the effects of age and interface material. Arch. Phys. Med. Rehabil. 86(4), 641–649 (2005)

    Article  Google Scholar 

  27. 27.

    Ogawa A. et al.: Design of lower limb prosthesis with contact pressure adjustment by MR fluid. In: 2008 30th Annual Int. Conference of the IEEE Eng. in Medicine and Biology Society, 2008, pp. 330–333 (2008).

  28. 28.

    Kahle, J.T., Highsmith, M.J.: Transfemoral sockets with vacuum-assisted suspension comparison of hip kinematics, socket position, contact pressure, and preference: ischial containment versus brimless. JRRD 50(9), 1241–1252 (2013)

    Article  Google Scholar 

  29. 29.

    Zhang, M., Lee, W.C.C.: Quantifying the regional load-bearing ability of trans-tibial stump. Prosthet. Orthot. Int. 30(1), 25–34 (2006)

    Article  Google Scholar 

  30. 30.

    Ghoseiri, K., Rastkhadiv, M.Y., Allami, M.: Evaluation of localized pain in the transtibial residual limb. Can Prosthet Orthot J. (2018). https://doi.org/10.33137/cpoj.v1i2.32028

    Article  Google Scholar 

  31. 31.

    Wernke, M.: Quantification of transhumeral prosthetic socket residual limb interface movement using motion capture and a slip detection sensor. University of South Florida, Tampa (2014)

    Google Scholar 

  32. 32.

    Gholizadeh, H., Abu Osman, N.A., Kamyab, M., Eshraghi, A., Abas, W.A.B., Azam, M.N.: Transtibial prosthetic socket pistoning: static evaluation of Seal-In X5 and dermo liner using motion analysis system. Clin. Biomech. 27, 34–39 (2012)

    Article  Google Scholar 

  33. 33.

    Tang, J., McGrath, M., Laszczak, P., et al.: Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture. Med Eng Phys 37, 1162–1168 (2015). https://doi.org/10.1016/j.medengphy.2015.10.004

    Article  Google Scholar 

  34. 34.

    Dao, T.T.: Hybrid rigid-deformable model for prediction of neighboring intervertebral disk loads during flexion movement after lumbar interbody fusion at L3–4 Level. J. Biomech. Eng. 139(3), 031010-031010–6 (2017)

    Article  Google Scholar 

  35. 35.

    Ballit, A., Mougharbel, I., Ghaziri, H., Dao, T.: Visual sensor fusion with error compensation strategy toward a rapid and low-cost 3D scanning system for the lower residual limb. IEEE Sens. J. (2020). https://doi.org/10.1109/JSEN.2020.3011172

    Article  Google Scholar 

  36. 36.

    Grosland, N.M., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., DeVries, N.A., Tadepalli, S.C., Lisle, C.: IA-FEMesh: an open-source, interactive, multiblock approach to musculoskeletal finite element model development. Comput. Methods Programs Biomed. 94(1), 96–107 (2009)

    Article  Google Scholar 

  37. 37.

    Urbancheka, M., Picken, E., Kalliainen, L., Kuzon, W.: Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 56(5), B191–B219 (2001)

    Article  Google Scholar 

  38. 38.

    Naylor, P.F.D.: The skin surface and friction. Br. J. Dematol. 67, 240–248 (1955)

    Google Scholar 

  39. 39.

    Colombo, G., Comotti, C., Redaelli, D., Regazzoni, D., Rizzi, C., Vitali, A.: A method to improve prosthesis leg design based on pressure analysis at the socket-residual limb interface. American Society of Mechanical Engineers, New york (2016). https://doi.org/10.1115/DETC2016-60131

    Google Scholar 

  40. 40.

    Kot, B.C.W., Zhang, Z.J., Lee, A.W.C., Leung, V.Y.F., Fu, S.N.: Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One 7(8), e44348 (2012)

    Article  Google Scholar 

  41. 41.

    Safari, M.R., Tafti, N., Aminian, G.: Socket interface pressure and amputee reported outcomes for comfortable and uncomfortable conditions of patellar tendon bearing socket: a pilot study. Assist. Technol. 27(1), 24–31 (2014). https://doi.org/10.1080/10400435.2014.949016

    Article  Google Scholar 

  42. 42.

    Choi, A.P.C., Zheng, Y.P.: Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: Finite element analysis of the finite deformation effect. Med. Biol. Eng. Comput. 43, 258–264 (2005)

    Article  Google Scholar 

  43. 43.

    Bonacini, D., Corradini, C., Magrassi, G.: 3D digital models reconstruction: residual limb analysis to improve prosthesis design. Body Model. Crime Scene Invest. 96–103 (2007)

  44. 44.

    Colombo, G., Facoetti, G., Rizzi, C.: A digital patient for computer-aided prosthesis design. Interf. Focus 3, 20120082 (2013). https://doi.org/10.1098/rsfs.2012.0082

    Article  Google Scholar 

  45. 45.

    Nayak, C., Singh, A., Chaudhary, H., Tripathi, A.: A novel approach for customized prosthetic socket design. Biomed. Eng. Appl. Basis Commun. 28(3), 1650022 (2016). https://doi.org/10.4015/S1016237216500228

    Article  Google Scholar 

  46. 46.

    Li, S., Lan, H., Luo, X., Lv, Y., Gao, L., Yu, H.: Quantitative compensation design for prosthetic socket based on eigenvector algorithm method. Rev. Sci. Instrum. 90(10), 104101 (2019). https://doi.org/10.1063/1.5092743

    Article  Google Scholar 

  47. 47.

    Nguyen, T.N., Ho Ba Tho, M.C., Dao, T.T.: A systematic review of real-time medical simulations with soft-tissue deformation: computational approaches, interaction devices, system architectures and clinical validations. Appl. Bionics Biomech. (2020). https://doi.org/10.1155/2020/5039329

    Article  Google Scholar 

  48. 48.

    Bender, J., Koschier, D., Charrier, P., Weber, D.: Position-based simulation of continuous materials. Computer Graphics (2014). https://doi.org/10.1016/j.cag.2014.07.004(2014)

    Article  Google Scholar 

  49. 49.

    Bender, J., Müller, M., Macklin, M.: Position-based simulation methods in computer graphics. NVIDIA PhysX Res. (2015). https://doi.org/10.2312/egt.20151045.t3

    Article  Google Scholar 

  50. 50.

    Liu, T., Bouaziz, S., Kavan, L.: Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36(3), 1–16 (2017)

    Article  Google Scholar 

  51. 51.

    Goulette, F., Chen, Z.-W.: Fast computation of soft tissue deformations in real-time simulation with hyper-elastic mass links. Comput. Methods Appl. Mech. Eng. (2015). https://doi.org/10.1016/j.cma.2015.06.015

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Xu, L., Lu, Y., Liu, Q.: Integrating viscoelastic mass-spring-dampers into position-based dynamics to simulate soft tissue deformation in real time. R. Soc. Open Sci. 5, 171587 (2018)

    Article  Google Scholar 

  53. 53.

    Tawhai, M., Bischoff, J., Einstein, D., Erdemir, A., Guess, T., Reinbolt, J.: Multiscale modeling in computational biomechanics. IEEE Eng. Med. Biol. Mag. 28(3), 41–49 (2009). https://doi.org/10.1109/MEMB.2009.932489

    Article  Google Scholar 

  54. 54.

    Megone, W., Roohpour, N., Gautrot, J.E.: Impact of surface adhesion and sample heterogeneity on the multiscale mechanical characterisation of soft biomaterials. Sci. Rep. 8, 6780 (2018). https://doi.org/10.1038/s41598-018-24671-x

    Article  Google Scholar 

  55. 55.

    Puleo, A., Nanci, A.: Understanding and controlling the bone–implant interface. Biomaterials 20(23–24), 2311–2321 (1999)

    Article  Google Scholar 

  56. 56.

    Xing, G., Manon, F., Guillaume, H.: Biomechanical behaviours of the bone–implant interface: a review. J. R. Soc. Interf. (2019). https://doi.org/10.1098/rsif.2019.0259

    Article  Google Scholar 

  57. 57.

    Saunders, C.G., Foort, J., Bannon, M., et al.: Computer aided design of prosthetic sockets for below-knee amputees. Prosthet. Orthot. Int. 9, 17–22 (1985). https://doi.org/10.3109/03093648509164819

    Article  Google Scholar 

  58. 58.

    Oberg, K., Kofman, J., Karisson, A., et al.: The CAPOD system—a Scandinavian CAD/CAM system for prosthetic sockets. J. Prosthet. Orthot. 1, 139–148 (1989)

    Article  Google Scholar 

  59. 59.

    Whiteside, S.R., Allen, M.J., Barringer, W.J., et al.: Practice analysis of certified practitioners in the disciplines of orthotics and prosthetics. American Board for Certification in Orthotics, Prosthetics, and Pedorthics, Alexandria (2007)

    Google Scholar 

  60. 60.

    Igarashi, Y., Igarashi, T., Suzuki, H.: Interactive cover design considering physical constraints. Comput. Graph. Forum 28(7), 1965–1973 (2009). https://doi.org/10.1111/j.1467-8659.2009.01575.x

    Article  Google Scholar 

  61. 61.

    Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (2015). https://doi.org/10.1145/2816795.2818013

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support and funding of 'Beirut Research and Innovation Center' (BRIC), Beirut, Lebanon.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tien-Tuan Dao.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballit, A., Mougharbel, I., Ghaziri, H. et al. Computer-aided parametric prosthetic socket design based on real-time soft tissue deformation and an inverse approach. Vis Comput (2021). https://doi.org/10.1007/s00371-021-02059-9

Download citation

Keywords

  • Computer-aided socket design
  • Real-time soft tissue deformation
  • Mass-spring system
  • Inverse approach
  • Lower limb prosthesis