Adaptive estimation of Hodge star operator on simplicial surfaces

Abstract

The Hodge star operator is a fundamental component of the second-order differential operators that bridges constitutive physical laws, as a matter of fact, it plays a central role in geometry processing and physical simulation. To be admissible, the discrete Hodge operators should be regular, symmetric, sparse and positive definite. Unfortunately, the last criteria is rarely met in the literature, which leads to inconsistent physical simulation behavior. In this paper, we exploit the intrinsic relationship between Hodge operator and the physical Fourier’s constitutive laws, to construct an adaptive discrete Hodge operator by expressing the Fourier’s laws on a surface mesh. As by-product, the new discrete Hodge operator is diagonal, regular and positive definite. Various comparative examples are presented to demonstrate the performance of our approach. The results show that the proposed operator performs better compared with the standard discrete Hodge.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge decomposition. Vis. Math. III 113–134, (2003)

  2. 2.

    Auclair-Fortier, M.F., Ziou, D.: A global approach for solving evolutive heat transfer for image denoising and inpainting. IEEE Trans. Image Process. 15(9), 2558–2574 (2006)

    Article  Google Scholar 

  3. 3.

    El Ouafdi, A.F., Ziou, D.: Global diffusion method for smoothing triangular mesh. Vis. Comput. 31(3), 295–310 (2015)

    Article  Google Scholar 

  4. 4.

    Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, 39–54 (2006)

  5. 5.

    Gu, X., Yau, S.: Computational Conformal Geometry. Advanced Lectures in Mathematics. Int. Press, Boston (2008)

    Google Scholar 

  6. 6.

    Pellikka, M., Suriniemi, S., Kettunen, L., Geuzaine, C.: Homology and cohomology computation in finite element modeling. SIAM J. Sci. Comput. 35(5), 1195–1214 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Poelke, K., Polthier, K.: Boundary-aware hodge decompositions for piecewise constant vector fields. Comput. Aided Des. 78, 126–136 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bossavit, A.: Computational electromagnetism and geometry. J. Jpn. Soc. Appl. Electromagn. 8(2), 203–209 (2000)

    Google Scholar 

  9. 9.

    Auchmann, B., Kurz, S.: A geometrically defined discrete hodge operator on simplicial cells. IEEE Trans. Magn. 42(4), 643–646 (2006)

    Article  Google Scholar 

  10. 10.

    He, B., Teixeira, F.L.: Geometric finite element discretization of maxwell equations in primal and dual spaces. Phys. Lett. A. 349(1–4), 1–14 (2006)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Tarhasaari, T., Kettunen, L.: Some realizations of a discrete hodge operator: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35(3), 1494–1497 (1999)

    Article  Google Scholar 

  12. 12.

    Wilson, S.O.: Cochain algebra on manifolds and convergence under refinement. Topol. Appl. 154(9), 1898–1920 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Teixeira, F.L.: Geometrical aspects of the simplicial discretization of maxwell’s equations. Prog. Electromagn. Res. 32, 171–188 (2001)

    Article  Google Scholar 

  14. 14.

    Gillette, A., Bajaj, C.: Dual formulations of mixed finite element methods with applications. Comput. Aided Des. 43(10), 1213–1221 (2011)

    Article  Google Scholar 

  15. 15.

    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Bossavit, A., Kettunen, L.: Yee-like schemes on staggered cellular grids: a synthesis between fit and fem approaches. IEEE Trans. Magn. 36(4), 861–867 (2000)

    Article  Google Scholar 

  17. 17.

    Weiland, T.: A discretization method for the solution of maxwell’s equations for six-component fields. Aeu-Arch. Elekron. Ub. 31(2), 116–120 (1977)

    Google Scholar 

  18. 18.

    Hiptmair, R.: Discrete hodge operators: an algebraic perspective. Prog. Electromagn. Res. 15(3), 343–344 (2001)

    Google Scholar 

  19. 19.

    Hirani, A.: Discrete exterior calculus. Thesis, Caltech (2003)

  20. 20.

    Mohamed, M.S., Hirani, A.N., Samtaney, R.: Comparison of discrete Hodge star operators for surfaces. Comput. Aided Des. 78, 118–125 (2016)

    Article  Google Scholar 

  21. 21.

    Hirani, A.N., Kalyanaramana, K., VanderZeeb, E.B.: Delaunay hodge star. Comput. Aided Des. 45(2), 540–544 (2013)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Mullen, P., Memari, P., de Goes, F., Desbrun, M.: Hot: Hodge-optimized triangulations. ACM Trans. Graph. 30(4), 103:1–103:12 (2011)

    Article  Google Scholar 

  23. 23.

    Yan, D.-M., Wonka, P.: Non-obtuse remeshing with centroidal voronoi tessellation. IEEE Trans. Vis. Comput. Graph. 22(9), 2136–2144 (2016)

    Article  Google Scholar 

  24. 24.

    Sharp, N., Soliman, Y., Crane, K.: Navigating intrinsic triangulations. ACM Trans. Graph. 38(4), 55:1–55:16 (2019)

    Article  Google Scholar 

  25. 25.

    Bobenko, A.I., Springborn, B.A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38, 740–756 (2007)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Bamberg,P., Sternberg, S.: A course in mathematics for students of physics 1. Cambridge UP (1991)

  27. 27.

    Shigeyuki, M.: Geometry of differential forms. Am. Math. Soc. 201, (2001)

  28. 28.

    Tonti, E.: The mathematical structure of classical and relativistic physics: a general classification diagram. Birkhäuser Basel (2013)

  29. 29.

    Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Modell. 9(4), 295–319 (1996)

    Article  Google Scholar 

  30. 30.

    Whitney, H.: Geometric Integration Theory, Princeton UP (1957)

  31. 31.

    Mattiussi, C.: A reference discretization strategy for the numerical solution of physical field problems. Adv. Imag. Electron. Phys. 121, 143–279 (2002)

    Article  Google Scholar 

  32. 32.

    Langtangen, H.-P., Linge, S.: Finite Difference Computing with PDEs: A Modern Software Approach. Springer, New York (2017)

    Google Scholar 

  33. 33.

    Sharp, N., Crane, K.: Geometry-central, www.geometry-central.net, Accessed 24 Jan 2020 (2019)

  34. 34.

    Geuzaine, C., Remacle, J.-F.: GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. F. El Ouafdi.

Ethics declarations

Conflict of interest

Authors Ahmed Fouad El Ouafdi, Hassan El Houari and Djemel Ziou declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For a sake of reproducibility, we present in what follows computational detail of discrete Harmonic 1-form (29). According to the Hodge theorem [27], each harmonic form \(h^1\) is linked to a closed form \(\omega ^1\) by

$$\begin{aligned} \omega ^1=d_0 \psi ^0+ h^1 \end{aligned}$$
(30)

where \(d_0\) is the exterior derivative operator (1) mapping the 0-form (function) \(\psi ^0\) to a 1-form. Since the harmonic form is co-closed, i.e., \(\delta _1 h^1=0\), the 0-form \(\psi ^0\) can be expressed in terms of the closed 1-form \(\omega ^1\) as

$$\begin{aligned} \delta _1 d_0 \psi ^0 =\delta _1\omega ^1. \end{aligned}$$
(31)

On the simplicial surface \({\mathcal {M}}_2\), let us denote by \({\mathcal {H}}^1\) the vector of discrete harmonic form, \(\varPsi ^0\) the vector of unknown discrete 0-form and \({\mathcal {W}}^1\) the vector of discrete closed 1-form. Then, by substituting the differential operators \(d_0\) and \(\delta _1\) by their matrix formulation (2) and (5), the two systems (31) and (30) can then be, respectively, expressed in discrete setting as

$$\begin{aligned}&D^T_{0} H_1 D _{0}\varPsi ^0 = D^T_{0} H_1 {\mathcal {W}}^1 \end{aligned}$$
(32)
$$\begin{aligned}&{\mathcal {H}}^1 = D_0 \varPsi ^0-{\mathcal {W}}^1,\; \end{aligned}$$
(33)

where the matrix factor \(H^{-1}_0\) was simplified from both sides of the system (32), and the construction of 1-form harmonic basis is described in algorithm 2.

figuree

The discrete closed 1-form \({\mathcal {W}}^1\) in the input is computed by the co-reduction method implemented in the Gmsh library [34].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Ouafdi, A.F., El Houari, H. & Ziou, D. Adaptive estimation of Hodge star operator on simplicial surfaces. Vis Comput (2020). https://doi.org/10.1007/s00371-020-01879-5

Download citation

Keywords

  • Discrete Hodge operator
  • Physical-based modeling
  • Harmonic form