NLME: a nonlinear motion estimation-based compression method for animated mesh sequence

Abstract

This paper proposes an efficient compression algorithm for animated three-dimensional meshes by introducing nonlinear transformations to model the motion field of deforming patches. First, a segmentation process is applied to separate the 3D model into different patches which have similar motion patterns through the sequence. Next, the motion of the resulting patches is accurately described by a nonlinear motion estimation model. The main idea is to exploit the temporal coherence of the geometry component by using a nonlinear predictor in order to get better approximation of vertex locations. Nonlinear motion transforms are computed at previous frame to match the subsequent ones. Moreover, an adaptive bit allocation algorithm is employed to determine the near-optimal number of bits for quantizing the prediction errors. The number of quantization bits for each segmented patch is determined by analyzing the geometry complexity of the patch and the statistical properties of the prediction errors. Finally, an extensive experimental study has been conducted to evaluate the coding efficiency of the proposed compression scheme. Simulation results demonstrate that the proposed method is very efficient in terms of rate-distortion performance, particularly for the animated models with non-rigid deformations, and outperforms the state-of-the-art methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Chen, J., Zheng, Y., Song, Y., Sun, H., Bao, H., Huang, J.: Cloth compression using local cylindrical coordinates. Vis. Comput. 33(6–8), 801–810 (2017)

    Article  Google Scholar 

  2. 2.

    Lengyel, J. E.: Compression of time-dependent geometry. In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 89–95. Atlanta (1999)

  3. 3.

    Mamou, K., Zaharia, T., Preteux, F.: A DCT-based approach for dynamic 3D mesh compression. WSEAS Transactions on information science and applications, pp. 1947–1954 (2006)

  4. 4.

    Ahn, J., Kim, C., Kuo, C., Ho, Y.: Motion-compensated compression of 3D animation models. Electron. Lett. 37(24), 1445–1446 (2001)

    Article  Google Scholar 

  5. 5.

    Zhang, J., Owen, C.: Octree-based animated geometry compression. In: Proceedings of the Data Compression Conference, pp. 508–517 (2004)

  6. 6.

    Zhang, J., Owen, C.: Octree-based animated geometry compression. Comput. Graph. 31(3), 463–479 (2007)

    Article  Google Scholar 

  7. 7.

    Muller, K., Smolic, A., Kautzner, M., Eisert, P., Wiegand, T.: Predictive compression of dynamic 3D meshes. In: 2005 IEEE International Conference on Image Processing, pp. 621–624 (2005)

  8. 8.

    Muller, K., Smolic, A., Kautzner, M., Eisert, P., Wiegand, T.: Rate-distortionoptimized predictive compression of dynamic 3D mesh sequences. Sig. Process. Image Commun. 21(9), 812–828 (2006)

    Article  Google Scholar 

  9. 9.

    Mamou, K., Zaharia, T., Preteux, F.: A skinning approach for dynamic 3D mesh compression. Comput. Animat. Virtual Worlds 17(3–4), 337–346 (2006)

    Article  Google Scholar 

  10. 10.

    Mamou, K., Zaharia, T., Preteux, F.: Famc: the mpeg-4 standard for animated mesh compression. In: 15th IEEE International Conference on Image Processing, pp. 2676–2679 (2008)

  11. 11.

    Hachani, M., Zaid, A.O., Puech, W.: Segmentation-based compression scheme for 3D animated models. SIViP 10(6), 1065–1072 (2016)

    Article  Google Scholar 

  12. 12.

    Alexa, M., Muller, W.: Representing animations by principal components. Comput. Graph. Forum 19(3), 411–418 (2000)

    Article  Google Scholar 

  13. 13.

    Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Comput. Graph. 28(1), 25–34 (2004)

    Article  Google Scholar 

  14. 14.

    Lee, P.F., Kao, C.K., Tseng, J.L., Jong, B.S., Lin, T.W.: 3D animation compression using affine transformation matrix and principal component analysis. IEICE Trans. Inf. Syst. 90(7), 1073–1084 (2007)

    Article  Google Scholar 

  15. 15.

    Amjoun, R., Sondershaus, R., Straser, W.: Compression of complex animated meshes. Advances in Computer Graphics, pp. 606–613 (2006)

  16. 16.

    Amjoun, R., Straser, W.: Efficient compression of 3-D dynamic mesh sequences. J WSCG 15(1–3), 32–46 (2007)

    Google Scholar 

  17. 17.

    Lalos, A.S., Vasilakis, A.A., Dimas, A., Moustakas, K.: Adaptive compression of animated meshes by exploiting orthogonal iterations. Vis. Comput. 33(6–8), 811–821 (2017)

    Article  Google Scholar 

  18. 18.

    Yang, J., Kim, C., Lee, S.: Compression of 3-D triangle mesh sequences based on vertex-wise motion vector prediction. IEEE Trans. Circuits Syst. Video Technol. 12(12), 1178–1184 (2002)

    Article  Google Scholar 

  19. 19.

    Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135 (2003)

  20. 20.

    Stefanoski, N., Ostermann, J.: Connectivity-guided predictive compression of dynamic 3D meshes. In: 2006 IEEE International Conference on Image Processing, pp. 2973–2976 (2006)

  21. 21.

    Stefanoski, N., Liu, X., Klie, P., Ostermann, J.: Scalable linear predictive coding of time-consistent 3D mesh sequences. 3DTV-Conference The True Vision—Capture, Transmission and Display of 3D Video, pp. 1–4 (2007)

  22. 22.

    Stefanoski, N., Ostermann, J.: SPC: fast and efficient scalable predictive coding of animated meshes. Comput. Graph. Forum 29, 101–116 (2010)

    Article  Google Scholar 

  23. 23.

    Bici, M.O., Akar, G.B.: Improved prediction methods for scalable predictive animated mesh compression. J. Vis. Commun. Image Represent. 22(7), 577–589 (2011)

    Article  Google Scholar 

  24. 24.

    Guskov, I., Khodakovsky, A.: Wavelet compression of parametrically coherent mesh sequences. In: SCA’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, pp. 183–192. Aire-la-Ville (2004)

  25. 25.

    Payan, F., Antonini, M.: Wavelet-based compression of 3D mesh sequences. In: Proceedings of IEEE ACIDCA-ICMI (2005)

  26. 26.

    Payan, F., Antonini, M.: Temporal wavelet-based compression for 3D animated models. Comput. Graph. 31(1), 77–88 (2007)

    Article  Google Scholar 

  27. 27.

    Briceno, H., Sander, P., McMillan, L., Gortler, S., Hoppe, H.: Geometry videos: a new representation for 3D animations. In: Proceedings of ACM Symposium on Computer Animation, pp. 136–146 (2003)

  28. 28.

    Wang, S., Kong, D., Xue, J., Zhu, W., Xu, M., Yin, B., Roth, H.: Connectivity-preserving geometry images. Vis. Comput. 31(9), 1163–1178 (2015)

    Article  Google Scholar 

  29. 29.

    Mamou, K., Zaharia, T., Preteux, F.: Multi-chart geometry video: a compact representation for 3D animations. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 711–718 (2006)

  30. 30.

    Vasa, L., Skala, V.: Coddyac: connectivity driven dynamic mesh compression. In: 3DTV-Conference The True Vision—Capture, Transmission and Display of 3D Video, pp. 1–4 (2007)

  31. 31.

    Vasa, L., Marras, S., Hormann, K., Brunnett, G.: Compressing dynamic meshes with geometric Laplacians. Comput. Graph. Forum 33(2), 145–154 (2014)

    Article  Google Scholar 

  32. 32.

    Hajizadeh, M.A., Ebrahimnezhad, H.: Predictive compression of animated 3D models by optimized weighted blending of key-frames. Comput. Animat. Virtual Worlds 27(6), 556–576 (2016)

    Article  Google Scholar 

  33. 33.

    Hajizadeh, M.A., Ebrahimnezhad, H.: Eigenspace compression: dynamic 3D mesh compression by restoring fine geometry to deformed coarse models. Multimed Tools Appl (2017). https://doi.org/10.1007/s11042-017-5394-2

    Article  Google Scholar 

  34. 34.

    Liu, W., Ribeiro, E.: A survey on image-based continuum-body motion estimation. Image Vis. Comput. 29(8), 509–523 (2011)

    Article  Google Scholar 

  35. 35.

    Guo, S., Southern, R., Chang, J., Greer, D., Zhang, J.J.: Adaptive motion synthesis for virtual characters: a survey. Vis. Comput. 31(5), 497–512 (2015)

    Article  Google Scholar 

  36. 36.

    Lee, H., Lavoue, G., Dupont, F.: Rate-distortion optimization for progressive compression of 3D mesh with color attributes. Vis. Comput. 28(2), 137–153 (2012)

    Article  Google Scholar 

  37. 37.

    Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive binary arithmetic coding in the H. 264/AVC video compression standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 620–636 (2013)

    Article  Google Scholar 

  38. 38.

    Vlasic, D., Baran, I., Matusik, W., Popovi´c, J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27(3), 1–9 (2008)

    Article  Google Scholar 

  39. 39.

    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring errors between surfaces using the hausdorff distance. In: Proceeding of the IEEE International Conference in Multimedia and Expo (ICME), pp. 705–708 (2002)

  40. 40.

    Vasa, L., Skala, V.: A perception correlated comparison method for dynamic meshes. IEEE Trans. Vis. Comput. Graph. 17(2), 220–230 (2011)

    Article  Google Scholar 

  41. 41.

    Touma, C., Gostman, C.: Triangle mesh compression. In: Proceeding of Graphics Interface, pp. 26–34 (1998)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Ebrahimnezhad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, M., Ebrahimnezhad, H. NLME: a nonlinear motion estimation-based compression method for animated mesh sequence. Vis Comput 36, 649–665 (2020). https://doi.org/10.1007/s00371-019-01645-2

Download citation

Keywords

  • Animated mesh sequence
  • Dynamic mesh compression
  • Rate-distortion
  • Nonlinear motion modeling
  • Motion segmentation