Skip to main content
Log in

Salient object detection based on Laplacian similarity metrics

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Background prior has become a novel viewpoint and made progresses in salient object detection. Most existing salient object detection algorithms based on background prior take boundaries as backgrounds and neglect nonbackground factors of boundaries, which is in fact unreasonable. Thus it is necessary to combine background prior with the analysis of boundary property. In this paper, the probability values computed by Mahalanobis distance are used to describe the likelihood of boundary superpixels belonging to backgrounds, which is viewed as a method for analyzing boundary properties. Meanwhile, some cues should be integrated with the obtained probability values for saliency computation. Inspired by the theory of Laplacian similarity metrics, two-stage complementary metrics are established according to different clusters in which two-stage queries lie, and a two-stage detection algorithm (SLSM) of salient objects is thus proposed by combining two-stage complementary similarity metrics with the probability values. Furthermore, when the detailed clusters (dense or sparse) of queries in each detection stage are ignored, an additional unified similarity metric is also constructed. Through the combination of the unified similarity metric and the proposed method for analyzing the boundary properties, another baseline algorithm (SLSMU) is also created. The results of experiments in which these two proposed algorithms are applied to four datasets demonstrate each of the two algorithms outperforms some existing state-of-the-art methods in terms of the different metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Superpixels and nodes are not distinguished in this study.

  2. Algorithms labeled * in the title of (P-R) curves denote the top two algorithms on different datasets.

References

  1. Shen, H., Li, S., Zhu, C., Chang, H., Zhang, J.: Moving object detection in aerial video based on spatiotemporal saliency. Chin. J. Aeronaut. 26(5), 1211–1217 (2013)

    Article  Google Scholar 

  2. Ren, Z., Gao, S., Chia, L.-T., Tsang, I.W.-H.: Region-based saliency detection and its application in object recognition. IEEE Trans. Circuits Syst. Video Technol. 24(5), 769–779 (2013)

    Article  Google Scholar 

  3. Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process 13(10), 1304–1318 (2004)

    Article  Google Scholar 

  5. Qin, C., Zhang, G., Zhou, Y., Tao, W., Cao, Z.: Integration of the saliency-based seed extraction and random walks for image segmentation. Neurocomputing 129, 378–391 (2013)

    Article  Google Scholar 

  6. Wang, D., Li, G., Jia, W., et al.: Saliency-driven scaling optimization for image retargeting. Vis. Comput. 27, 853–860 (2011)

    Article  Google Scholar 

  7. Li, L., Jiang, S., Zha, Z.-J., Wu, Z., Huang, Q.: Partial-duplicate image retrieval via saliency-guided visual matching. IEEE Multimedia. 20(3), 13–23 (2013)

    Article  Google Scholar 

  8. Margolin, R., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. Vis. Comput. 29(5), 381–392 (2013)

    Article  Google Scholar 

  9. Klein, D.A., Schulz, D., Frintrop, S., Cremers, A. B.: Adaptive real-time video-tracking for arbitrary objects. In: Proceedings IEEE/RSJ IROS, pp. 772–777 (2010)

  10. Zhao, H., Mao, X., Jin, X., et al.: Real-time saliency-aware video abstraction. Vis. Comput. 25, 973–984 (2009)

    Article  Google Scholar 

  11. Borji, A., et al.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  12. Wei, Y., et al.: Geodesic saliency using background priors. In: 2012 Computer Vision–ECCV, pp. 29–42, (2012)

  13. Jiang, H., et al.: Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013)

  14. Zhu, W., et al.: Saliency optimization from robust background detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

  15. Li, X., et al.: Saliency detection via dense and sparse reconstruction. In: 2013 IEEE Conference on Computer Vision, pp. 2976–2983 (2013)

  16. Jiang, B., et al.: Saliency detection via absorbing markov chain. In: 2013 IEEE Conference on Computer Vision, pp. 1665–1672 (2013)

  17. Yang, C., et al.: Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

  18. Qin, Y., et al.: Saliency detection via cellular automata. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 110–119 (2015)

  19. Li, C., et al.: Robust saliency detection via regularized random walks ranking. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2710–2717 (2015)

  20. Jiang, W., et al.: Saliency detection model based on selective edges prior. J. Electron. Inf. Technol. 37(1), 130–136 (2015)

    Google Scholar 

  21. Wu, X.-M., Li, Z., Chang, S.-F.: New insights into Laplacian similarity search. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1949–1957 (2015)

  22. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 853–860 (2012)

  23. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  24. Li, Z., Chen, J.: Superpixel Segmentation using Linear Spectral Clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1356–1363 (2015)

  25. Veksler, O., Boykov, Y., Mehran, P.: Superpixels and supervoxels in an energy optimization framework. Comput. Vis.–ECCV 2010, 211–224 (2010)

    Google Scholar 

  26. Van den Bergh, M., et al.: Seeds: superpixels extracted via energy-driven sampling. Comput. Vis.–ECCV 2012, 13–26 (2012)

    Google Scholar 

  27. Liu, M.-Y., et al.: Entropy rate superpixel segmentation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2104 (2011)

  28. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: 2003 IEEE International Conference on Computer Vision, pp. 313–319 (2003)

  29. Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  30. Otsu, N.: A threshold selection method from graylevel histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  31. Mingming, C.: MSRA10K Salient Object Database (2014). http://mmcheng.net/msra10k/

  32. Shi, Jianping, Yan, Qiong, Li, Xu, Jia, Jiaya: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2016)

    Article  Google Scholar 

  33. Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4321–4328 (2014)

  34. Achanta, R., et al.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)

  35. Tavakoli, H.R., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. Image Analysis. pp. 666–675, Springer (2011)

  36. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  37. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. vis. 13(4), 11–11 (2013)

    Article  Google Scholar 

  38. Rahtu, E., et al.: Segmenting salient objects from images and videos. Comput. Vis.–ECCV 2010, 366–379 (2010)

    Google Scholar 

  39. Murray, N., et al.: Saliency estimation using a non-parametric low-level vision model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, 433–440 (2011)

  40. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

  41. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans- Pattern Anal. Mach. Intell. 34(1), 194–201 (2012)

    Article  Google Scholar 

  42. Duan, L., et al.: Visual saliency detection by spatially weighted dissimilarity. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 473–480 (2011)

  43. Perazzi, F., et al.: Saliency filters: Contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740 (2012)

  44. Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4321–4328 (2014)

  45. Achanta, R., et al.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)

  46. Yan, Q., et al.: Hierarchical saliency detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 51475086), Colleges and Universities of Liaoning Province Science and Technology Research Projects (No. 2014020026), Dr. Fund of Northeastern University at Qinhuangdao (No. XNB2015006), and Colleges and Universities in Hebei Province Science and Technology Research Fund (No. QN2016310). We are particularly grateful to Mingming Cheng group with Media Computing Lab, CCCE&CS, Nankai University, for providing free evaluation codes of MATLAB: http://mmcheng.net/zh/salobjbenchmark/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoyan Wang or Xingang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, T. & Wang, X. Salient object detection based on Laplacian similarity metrics. Vis Comput 34, 645–658 (2018). https://doi.org/10.1007/s00371-017-1404-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1404-7

Keywords

Navigation