The Visual Computer

, Volume 34, Issue 4, pp 589–601 | Cite as

Removing Monte Carlo noise using a Sobel operator and a guided image filter

  • Yu Liu
  • Changwen Zheng
  • Quan Zheng
  • Hongliang Yuan
Original Article


In this study, a novel adaptive rendering approach is proposed to remove Monte Carlo noise while preserving image details through a feature-based reconstruction. First, noise in the additional features is removed using a guided image filter that reduces the impact of noisy features involving strong motion blur or depth of field. The Sobel operator is then employed to recognize the geometric structures by robustly computing a gradient buffer for each feature. Given the gradient information for high-dimensional features, we compute the optimal filter parameters using a data-driven method. Finally, an error analysis is derived through a two-step smoothing strategy to produce a smooth image and guide the adaptive sampling process. Experimental results indicate that our approach outperforms state-of-the-art methods in terms of visual image quality and numerical error.


Adaptive sampling and reconstruction Guided image filter Sobel operator Ray tracing 


  1. 1.
    Li, T.M., Wu, Y.T., Chuang, Y.Y.: SURE-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31(6), 194:1–194:9 (2012)Google Scholar
  2. 2.
    Rousselle, F., Manzi, M., Zwicker, M.: Robust denoising using feature and color information. Comput. Graph. Forum 32(7), 121–130 (2013)CrossRefGoogle Scholar
  3. 3.
    Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30(6), 6:1–6:11 (2011)CrossRefGoogle Scholar
  4. 4.
    Moon, B., Carr, N., Yoon, S.: Adaptive rendering based on weighted local regression. ACM Trans. Graph. 33(5), 170:1–170:14 (2014)CrossRefGoogle Scholar
  5. 5.
    Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34(4), 122:1–122:12 (2015)CrossRefGoogle Scholar
  6. 6.
    Bauszat, P., Eisemann, M., Eisemann, E.: General and robust error estimation and reconstruction for Monte Carlo rendering. Comput. Graph. Forum 34(2), 597–608 (2015)CrossRefGoogle Scholar
  7. 7.
    He, K., Sun, J., Tang, X.: Guided Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(6), 1397–1409 (2010)CrossRefGoogle Scholar
  8. 8.
    Kajiya, J.T.: The rendering equation. In: ACM SIGGRAPH, pp. 143–150 (1986)Google Scholar
  9. 9.
    Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27(3), 33:1–33:10 (2008)CrossRefGoogle Scholar
  10. 10.
    Durand, F., Holzschuch, N., Soler, C., Chan, E., Sillion, F.X.: A frequency analysis of light transport. ACM Trans. Graph. 24(3), 1115–1126 (2005)CrossRefGoogle Scholar
  11. 11.
    Soler, C., Subr, K., Durand, F., Holzschuch, N., Sillion, F.: Fourier depth of field. ACM Trans. Graph. 28(2), 18:1–18:12 (2009)CrossRefGoogle Scholar
  12. 12.
    Egan, K., Tseng, Y.T., Durand, F., Holzschuch, N.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans Graph 28(3), 93:1–93:13 (2009)CrossRefGoogle Scholar
  13. 13.
    Egan, K., Hecht, F., Durand, F., Ramamoorthi, R.: Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30(2), 9:1–9:13 (2011)CrossRefGoogle Scholar
  14. 14.
    Egan, K., Durand, F., Ramamoorthi, R.: Practical filtering for efficient ray-traced directional occlusion. ACM Trans. Graph. 30(6), 180:1–180:10 (2011)CrossRefGoogle Scholar
  15. 15.
    Belcour, l, Soler, C., Subr, K., Holzschuch, N., Durand, F.: 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32(3), 31:1–31:18 (2011)MATHGoogle Scholar
  16. 16.
    Lehtinen, J., Aila, T., Chen, J., Laine, S., Durand, F.: Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 31(4), 55:1–55:10 (2012)CrossRefGoogle Scholar
  17. 17.
    Lehtinen, J., Aila, T., Laine, S., Durand, F.: Reconstructing the indirect light field for global illumination. ACM Trans Graph 30(4), 51:1–51:12 (2011)CrossRefGoogle Scholar
  18. 18.
    Kettunen, M., Manzi, M., Aittala, M., Lehtinen, J.: Gradient-domain path tracing. ACM Trans. Graph. 34(4), 123:1–123:13 (2015)CrossRefMATHGoogle Scholar
  19. 19.
    Manzi, M., Vicini, D., Zwicker, M.: Regularizing image reconstruction for gradient-domain rendering with feature patches. Comput. Graph. Forum 35(2), 263–273 (2016)CrossRefGoogle Scholar
  20. 20.
    Sen, P., Darabi, S.: Compressed rendering: a rendering application of compressed sensing. IEEE Trans. Vis. Comput. Graph. 17(4), 487–499 (2011)CrossRefGoogle Scholar
  21. 21.
    Liu, X.D., WU, J.Z., Zheng, C.W.: KD-tree based parallel adaptive rendering. The Visual Computer 28(6–8), 613–623 (2012)CrossRefGoogle Scholar
  22. 22.
    Mitchell, D.P.: Generating antialiased images at low sampling densities. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 21, pp. 65-72. ACM, Anaheim (1987)Google Scholar
  23. 23.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In Proceedings of the International Conference on Computer Vision, pp. 839–846 (1998)Google Scholar
  24. 24.
    Buades, A., Coll, B., Morel, J.M: A non-local algorithm for image denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 60-65 (2005)Google Scholar
  25. 25.
    Rousselle, F., Knaus, C., Zwicker, M.: Adaptive rendering with non-local means filtering. ACM Trans. Graph. 31(6), 195:1–195:9 (2012)CrossRefGoogle Scholar
  26. 26.
    Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. 28(5), 140:1–140:12 (2009)CrossRefGoogle Scholar
  27. 27.
    Kalantari, N.K., Sen, P.: Removing the noise in Monte Carlo rendering with general image denoising algorithm. Comput. Graph. Forum 32(2), 93–102 (2013)CrossRefGoogle Scholar
  28. 28.
    Sen, P., Darabi, S.: On Filtering the Noise from the Random parameters in Monte Carlo Rendering. ACM Trans Graph 31(3), 18:1–18:14 (2012)CrossRefGoogle Scholar
  29. 29.
    Bauszat, P., Eisemann, M., John, S.: Sample-based manifold filtering for interactive global illumination and depth of field. Comput. Graph. Forum 34(1), 265–276 (2015)CrossRefGoogle Scholar
  30. 30.
    Liu, X.D., Zheng, C.W.: Adaptive cluster rendering via regression analysis. Vis. Comput. 31(1), 105–114 (2015)CrossRefGoogle Scholar
  31. 31.
    Liu, X.D., Zheng, C.W.: Parallel adaptive sampling and reconstruction using multi-scale and directional analysis. The Visual Computer 29(6–8), 501–511 (2013)CrossRefGoogle Scholar
  32. 32.
    Moon, B., Jun, J.Y., Lee, J.: Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Comput. Graph. Forum 32(1), 139–151 (2013)CrossRefGoogle Scholar
  33. 33.
    Bitterli, B., Rousselle, F., Moon, B.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Comput. Graph. Forum 35(4), 107–117 (2016)CrossRefGoogle Scholar
  34. 34.
    Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive high-quality global illumination. Comput. Graph. Forum 30(4), 1361–1368 (2011)CrossRefGoogle Scholar
  35. 35.
    Delbracio, M., Muse, P., Buades, A., Chauvier, J.: Boosting Monte Carlo Rendering by ray histogram fusion. ACM Trans Graph 33(1), 8:1–8:15 (2014)CrossRefMATHGoogle Scholar
  36. 36.
    Moon, B., Guitian, J.A., Yoon, S., Mitchell, K.: Adaptive rendering with linear predictions. ACM Trans. Graph. 34(4), 121:1–121:11 (2015)CrossRefGoogle Scholar
  37. 37.
    Moon, B., McDonagh, S., Mitchell, K., Gross, M.: Adaptive polynomial rendering. ACM Trans Graph 35(4), 40:1–40:11 (2016)Google Scholar
  38. 38.
    Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph. Forum 34(2), 667–681 (2015)CrossRefGoogle Scholar
  39. 39.
    Ruppert, D., Wand, M.: Multivariate locally weighted least squares regression. The annals of statistics 22(3), 1346–1370 (1994)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Fransisco (2010)Google Scholar
  41. 41.
    Wu, F.K., Zheng, C.W.: Microfacet-based interference simulation for multilayer films. Graphical Models 78(6), 26–35 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yu Liu
    • 1
    • 2
  • Changwen Zheng
    • 2
  • Quan Zheng
    • 2
  • Hongliang Yuan
    • 2
  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations