The Visual Computer

, Volume 34, Issue 3, pp 359–375 | Cite as

Style-based biped walking control

  • Zumra Kavafoglu
  • Ersan Kavafoglu
  • Gokcen Cimen
  • Tolga Capin
  • Hasmet Gurcay
Original Article


We present a control approach for synthesizing physics-based walking motions that mimic the style of a given reference walking motion. Style transfer between the reference motion and its physically simulated counterpart is achieved via extracted high-level features like the trajectory of the swing ankle and the twist of the swing leg during stepping. The physically simulated motion is also capable of tracking the intra-step variations of the sagittal character center of mass velocity of the reference walking motion. This is achieved by an adaptive velocity control strategy which is fed by a gain–deviation relation curve learned offline. This curve is learned from a number of training walking motions once and is used for velocity control of other reference walking motions. The control approach is tested with motion capture data of several walking motions of different styles. The approach also enables generating various styles manually or by varying the high-level features of an existing motion capture data. The demonstrations show that the proposed control framework is capable of synthesizing robust motions which mimic the desired style regardless of the changing environment or character proportions.


Physics-based animation Character animation Biped walking control Data-driven animation 



This work is supported by the Scientific and Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, Project No. 112E105). The authors would like to thank anonymous reviewers for their helpful comments to improve this paper.

Supplementary material

371_2016_1338_MOESM1_ESM.mp4 (106.6 mb)
Supplementary material 1 (mp4 109190 KB)


  1. 1.
    Abe, Y., Popović, J.: Simulating 2D gaits with a phase-indexed tracking controller. IEEE Comput. Graph. Appl. 31(4), 22–33 (2011). doi: 10.1109/MCG.2011.62 CrossRefGoogle Scholar
  2. 2.
    Backman, R., Kallmann, M.: Designing controllers for physics-based characters with motion networks. Comput. Animat. Virtual Worlds 24(6), 553–563 (2013)CrossRefGoogle Scholar
  3. 3.
    Barliya, A., Omlor, L., Giese, M.A., Berthoz, A., Flash, T.: Expression of emotion in the kinematics of locomotion. Exp. Brain Res. 225(2), 159–176 (2013). doi: 10.1007/s00221-012-3357-4 CrossRefGoogle Scholar
  4. 4.
    Carensac, S., Pronost, N., Bouakaz, S.: Real-time gait control for partially immersed bipeds. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, MIG ’15, pp. 177–182. ACM, New York (2015). doi: 10.1145/2822013.2822016
  5. 5.
    Coros, S., Beaudoin, P., van de Panne, M.: Robust task-based control policies for physics-based characters. ACM Trans. Graph. 28(5), 1 (2009). doi: 10.1145/1618452.1618516 CrossRefGoogle Scholar
  6. 6.
    Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Trans. Graph. 29(4), 1 (2010). doi: 10.1145/1778765.1781156 CrossRefGoogle Scholar
  7. 7.
    Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills. ACM Trans. Graph. 27(5), 1 (2008). doi: 10.1145/1409060.1409066 CrossRefGoogle Scholar
  8. 8.
    Coumans, E.: Bullet physics engine. (2005)
  9. 9.
    Da Silva, M., Abe, Y., Popović, J.: Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27(3), 1 (2008). doi: 10.1145/1360612.1360681 CrossRefGoogle Scholar
  10. 10.
    Da Silva, M., Abe, Y., Popović, J.: Simulation of human motion data using short-horizon model-predictive control. Comput. Graph. Forum 27(2), 371–380 (2008). doi: 10.1111/j.1467-8659.2008.01134.x CrossRefGoogle Scholar
  11. 11.
    de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. 29(4), 1 (2010). doi: 10.1145/1778765.1781157 CrossRefGoogle Scholar
  12. 12.
    Firmin, M., van de Panne, M.: Controller design for multi-skilled bipedal characters. Comput. Graph. Forum 34(8), 50–63 (2015). doi: 10.1111/cgf.12607 CrossRefGoogle Scholar
  13. 13.
    Geijtenbeek, T., Pronost, N., Stappen, A.F.V.D.: Simple data-driven control for simulated bipeds. In: SCA ’12: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211–219 (2012). doi: 10.2312/SCA/SCA12/211-219
  14. 14.
    Hansen, N.: The cma evolution strategy: a comparing review. In: Lozano, J., Larraaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Berlin (2006)CrossRefGoogle Scholar
  15. 15.
    Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. J. Mach. Learn. Res. 9, 993–996 (2008)MATHGoogle Scholar
  16. 16.
    Jain, S., Liu, C.K.: Modal-space control for articulated characters. ACM Trans. Graph. 30(5), 1–12 (2011). doi: 10.1145/2019627.2019637 CrossRefGoogle Scholar
  17. 17.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). Accessed 01 Jan 2016
  18. 18.
    Kang, G.E., Gross, M.M.: The effect of emotion on movement smoothness during gait in healthy young adults. J. Biomech. doi: 10.1016/j.jbiomech.2016.10.044
  19. 19.
    Laszlo, J., van de Panne, M., Fiume, E.: Limit cycle control and its application to the animation of balancing and walking. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’96, pp. 155–162. ACM Press, New York, (1996). doi: 10.1145/237170.237231
  20. 20.
    Laszlo, J., van de Panne, M., Fiume, E.: Interactive control for physically-based animation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’00, pp. 201–208. ACM Press, New York (2000). doi: 10.1145/344779.344876
  21. 21.
    Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. 29(4), 1 (2010). doi: 10.1145/1778765.1781155 Google Scholar
  22. 22.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Levine, S., Popović, J.: Physically plausible simulation for character animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 221–230 (2012). doi: 10.2312/SCA/SCA12/221-230
  24. 24.
    Liu, L., Yin, K., Guo, B.: Improving sampling-based motion control. Comput. Graph. Forum 34(2), 415–423 (2015). doi: 10.1111/cgf.12571 CrossRefGoogle Scholar
  25. 25.
    Liu, L., Yin, K., van de Panne, M., Shao, T., Xu, W.: Sampling-based contact-rich motion control. ACM Trans. Graph. 29(4), 1 (2010). doi: 10.1145/1778765.1778865 CrossRefGoogle Scholar
  26. 26.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)Google Scholar
  27. 27.
    MIDAS: Human motion database. (2015)
  28. 28.
    Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 1 (2009). doi: 10.1145/1531326.1531387 CrossRefGoogle Scholar
  29. 29.
    Oberg, T., Karsznia, A., Oberg, K.: Basic gait parameters: reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 30(2), 210–223 (1993). doi: 10.1080/19397030902947041 Google Scholar
  30. 30.
    Paróczai, R., Bejek, Z., Illyés, A.: Gait parameters of healthy, elderly people. Phys. Educ. Sport 4(1), 49–58 (2006)Google Scholar
  31. 31.
    Pratt, J., Dilworth, P., Pratt, G.: Virtual model control of a bipedal walking robot. In: Proceedings of the IEEE International Conference on Robotics and Automation 1997, vol. 1, pp. 193–198 (1997). doi: 10.1109/ROBOT.1997.620037
  32. 32.
    Sharon, D., Van De Panne, M.: Synthesis of controllers for stylized planar bipedal walking. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2005, pp. 2387–2392 (2005). doi: 10.1109/ROBOT.2005.1570470
  33. 33.
    Sok, K., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Trans. Graph. 26(3), 107 (2007). doi: 10.1145/1276377.1276511 CrossRefGoogle Scholar
  34. 34.
    Sunada, C., Argaez, D., Dubowsky, S., Mavroidis, C.: A coordinated Jacobian transpose control for mobile multi-limbed robotic systems. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 1910–1915 (1994). doi: 10.1109/ROBOT.1994.351182
  35. 35.
    Tanawongsuwan, R., Bobick, A.: Performance analysis of time-distance gait parameters under different speeds. In: 4th International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA 2003), pp. 715–724 (2003). doi: 10.1007/3-540-44887-X_83
  36. 36.
    Tsai, Y.Y., Lin, W.C., Cheng, K.B., Lee, J., Lee, T.Y.: Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Trans. Vis. Comput. Graph. 16(2), 325–337 (2010). doi: 10.1109/TVCG.2009.76 CrossRefGoogle Scholar
  37. 37.
    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. ACM Trans. Graph. 28(5), 1 (2009). doi: 10.1145/1618452.1618514 Google Scholar
  38. 38.
    Ye, Y., Liu, C.K.: Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29(4), 1 (2010). doi: 10.1145/1778765.1778811 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26(3), 105 (2007). doi: 10.1145/1239451.1239556 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsHacettepe UniversityÇankaya, AnkaraTurkey
  2. 2.Computer Graphics DepartmentHacettepe UniversityÇankaya, AnkaraTurkey
  3. 3.Department of Computer ScienceETH ZurichZurichSwitzerland
  4. 4.Department of Computer EngineeringTED UniversityÇankaya, AnkaraTurkey

Personalised recommendations