Advertisement

The Visual Computer

, Volume 34, Issue 3, pp 323–336 | Cite as

Local-to-global mesh saliency

  • Ran Song
  • Yonghuai Liu
  • Ralph R. Martin
  • Karina Rodriguez Echavarria
Original Article

Abstract

As a measure of regional importance in agreement with human perception of 3D shape, mesh saliency should be based on local geometric information within a mesh but more than that. Recent research has shown that global consideration has a significant role in mesh saliency. This paper proposes a local-to-global framework for computing mesh saliency where we offer novel solutions to solve three inherent problems: (1) an algorithm based on statistic Laplacian which does not only compute local saliency, but also facilitates the later computation of global saliency; (2) a local-to-global method based on pooling and global distinctness to compute global saliency; (3) a framework to integrate local and global saliency. Experiments demonstrate that our approach can effectively detect salient features consistent with human perceptual interest. We also provide comparisons to existing state-of-the-art methods for mesh saliency and show improved results produced by our method.

Keywords

Mesh saliency Laplacian Global distinctness 

Notes

Acknowledgements

This work is partly funded by EPSRC via the ‘Automatic Semantic Analysis of 3D Content in Digital Repositories’ project (EP/L006685/1). This support is gratefully acknowledged.

References

  1. 1.
    Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., Torralba, A.: Mit saliency benchmark. http://saliency.mit.edu/
  2. 2.
    Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proceedings of Eurographics, pp. 643–652 (2008)Google Scholar
  3. 3.
    Chen, X., Saparov, A., Pang, B., Funkhouser, T.: Schelling points on 3D surface meshes. In: Proceedings of SIGGRAPH (2012)Google Scholar
  4. 4.
    Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmonic Anal. 21(1), 53–94 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)CrossRefGoogle Scholar
  6. 6.
    Dey, T.K., Ranjan, P., Wang, Y.: Convergence, stability, and discrete approximation of laplace spectra. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 650–663 (2010)Google Scholar
  7. 7.
    Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. (TAP) 6(1), 1 (2009)CrossRefGoogle Scholar
  8. 8.
    Fu, H., Cohen-Or, D., Dror, G., Sheffer, A.: Upright orientation of man-made objects. In: ACM transactions on graphics (TOG), vol. 27, p. 42. ACM (2008)Google Scholar
  9. 9.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)CrossRefGoogle Scholar
  10. 10.
    Guy, G., Medioni, G.: Inference of surfaces, 3d curves, and junctions from sparse, noisy, 3d data. IEEE Trans. Pattern Anal. Mach. Intell. 19(11), 1265–1277 (1997)CrossRefGoogle Scholar
  11. 11.
    Hou, T., Qin, H.: Admissible diffusion wavelets and their applications in space-frequency processing. IEEE Trans. Vis. Comput. Graph. 19(1), 3–15 (2013)CrossRefGoogle Scholar
  12. 12.
    Howard, I.: Seeing in depth. University of Toronto, Toronto (2002)Google Scholar
  13. 13.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  14. 14.
    Jin, H., Soatto, S., Yezzi, A.: Multi-view stereo reconstruction of dense shape and complex appearance. IJCV 63(3), 175–189 (2005)CrossRefGoogle Scholar
  15. 15.
    Kim, Y., Varshney, A., Jacobs, D., Guimbretiere, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7(2), 12:1–12:13 (2010)CrossRefGoogle Scholar
  16. 16.
    Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nat. Neurosci. 2, 9–10 (1999)CrossRefGoogle Scholar
  17. 17.
    Koenderink, J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth matters: Influence of depth cues on visual saliency. In: Proceedings of ECCV, pp. 101–115. Springer (2012)Google Scholar
  19. 19.
    Lee, C., Varshney, A., Jacobs, D.: Mesh saliency. In: Proceedings of SIGGRAPH (2005)Google Scholar
  20. 20.
    Lee, S., Xin, J., Westland, S.: Evaluation of image similarity by histogram intersection. Color Res. Appl. 30(4), 265–274 (2005)CrossRefGoogle Scholar
  21. 21.
    Leifman, G., Shtrom, E., Tal, A.: Surface regions of interest for viewpoint selection. In: Proceedings of CVPR (oral) (2012)Google Scholar
  22. 22.
    Mantiuk, R., Myszkowski, K., Pattanaik, S.: Attention guided mpeg compression for computer animations. In: Spring Conference on Computer graphics, pp. 239–244. ACM (2003)Google Scholar
  23. 23.
    Matlin, M.W.: Cognition (Textbook), 8th edn. Wiley, New York (2013)Google Scholar
  24. 24.
    Newman, M.E.: The mathematics of networks. The new palgrave encyclopedia of economics (2008)Google Scholar
  25. 25.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 281–289 (2003)CrossRefGoogle Scholar
  26. 26.
    Pelphrey, K., Sasson, N., Reznick, J., Paul, G., Goldman, B., Piven, J.: Visual scanning of faces in autism. J. Autism Dev. Disord. 32(4), 249–261 (2002)CrossRefGoogle Scholar
  27. 27.
    Perron, O.: Zur theorie der matrices. Mathematische Annalen 64(2), 248–263 (1907)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Secord, A., Lu, J., Finkelstein, A., Singh, M., Nealen, A.: Perceptual models of viewpoint preference. ACM Trans. Graph. (TOG) 30(5), 109 (2011)CrossRefGoogle Scholar
  29. 29.
    Shilane, P., Funkhouser, T.: Distinctive regions of 3d surfaces. ACM Trans. Graph. 26(2), 7 (2007)CrossRefGoogle Scholar
  30. 30.
    Song, R., Liu, Y., Martin, R.R., Rosin, P.L.: Mesh saliency via spectral processing. ACM Trans. Graph. 33(1), 6 (2014)CrossRefMATHGoogle Scholar
  31. 31.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of SGP, pp. 1383–1392 (2009)Google Scholar
  32. 32.
    Tao, P., Cao, J., Li, S., Liu, X., Liu, L.: Mesh saliency via ranking unsalient patches in a descriptor space. Comput. Graph. 46, 264–274 (2015)CrossRefGoogle Scholar
  33. 33.
    Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH, pp. 351–358. ACM (1995)Google Scholar
  34. 34.
    Wolfe, J.M.: Guided search 2.0 a revised model of visual search. Psychon. Bull. Rev. 1(2), 202–238 (1994)CrossRefGoogle Scholar
  35. 35.
    Wu, J., Shen, X., Zhu, W., Liu, L.: Mesh saliency with global rarity. Graph. Models. 75(5), 255–264 (2013)CrossRefGoogle Scholar
  36. 36.
    Yee, H., Pattanaik, S., Greenberg, D.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20(1), 39–65 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Computing, Engineering and MathematicsUniversity of BrightonBrightonUK
  2. 2.Department of Computer ScienceAberystwyth UniversityAberystwythUK
  3. 3.School of Computer Science and InformaticsCardiff UniversityCardiffUK

Personalised recommendations