Skip to main content
Log in

Tidally driven sulfidic conditions in Peruvian mangrove sediments

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The seasonal influence of tidal regimes on sulfidic conditions was studied in intertidal environments from a mangrove estuary in Northern Peru. Along two sampling stations, creek water and sediment cores were collected during the dry and wet seasons at all tidal phases (ebb, low, flow, and high tides). Physical-chemical parameters were measured in the creek water (temperature, salinity, pH, Eh, and DO), whereas pH, redox potential (Eh), and total organic matter contents were obtained from the sediment cores. In addition, total dissolved sulfide content ∑ (H2S, HS, H2−) was measured from sediment pore water. During the dry and wet seasons, the creek water pH, Eh, and dissolved oxygen were lowest in low tide, whereas oxygenated conditions and higher pH and Eh values prevailed in high tide. The total organic matter content in sediments was higher during the dry season, with the highest contents observed in the seaward station. Higher average ∑H2S (landward station, 243.1 ± 234.9 μM L−1; seaward station, 544.9 ± 174.4 μM L−1) were noted during wet season compared to dry season (landward station, 5.3 ± 4.5 μM L−1; seaward station, 430.2 ± 435.1 μM L−1). These ∑H2S contents increased towards the bottom of the sediment column, reflecting the anaerobic decomposition of the organic matter and sulfate reduction. This study provides insight to the geochemical dynamics of intertidal mangrove sediments that are sensitive to fluctuating reducing and sulfidic conditions, oscillating at time scales of minutes to hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alongi DM (2009) The energetics of mangrove forests. Springer science, New York, 179pp. https://doi.org/10.1007/978-1-4020-4271-3

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219

    Article  Google Scholar 

  • Bianchi N (2007) Biogeochemistry of estuaries. Oxford university press, New York, p 720

  • Black, CA (1965) Methods of soil analysis: Physical and mineralogical properties, including statistics of measurement and sampling. American Society of Agronomy, Madison, p 1357

  • Black KD, Shimmield GB (2003) Biogeochemistry of marine systems. Blackwell Publishing, England, p 372

  • Borges AV, Djenidi S, Lacroix G, Theate GJ, Delille B, Frankignoulle M (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30 1558pp

  • Bouillon S, Boschker HTS (2006) Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3:175–185

    Article  Google Scholar 

  • Bouillon S, Borges AV, Casteneda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:GB2013

    Article  Google Scholar 

  • Breithaupt JL, Smoak JM, Smith TJ III, Sanders CJ (2014) Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. J Geophys Res Biogeosci 119:2032–2048. https://doi.org/10.1002/2014JG002715

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1–12

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  Google Scholar 

  • Fossing HR, Jorgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8:205–222

    Article  Google Scholar 

  • INRENA (2011) Plan Maestro del Santuario Nacional Los Manglares de Tumbes 2007 - 2011. Intendencia de Áreas Naturales Protegidas 175pp

  • Kristensen E, King GM, Holmer M, Banta GT, Jensen MH, Hansen K, Bussarawit N (1994) Sulfate reduction, acetate turnover and carbon metabolism in sediments of Ao Nam Bor mangrove, Phuket, Thailand. Mar Ecol Prog Ser 109:245–255

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219

    Article  Google Scholar 

  • Lymo TJ, Pol A, Den-camp H (2002a) Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. AMBIO J Hum Environ 31:614–616

    Article  Google Scholar 

  • Lymo TJ, Pol A, Den-camp H (2002b) Methane emission, sulphide concentration and redox potential profiles in Mtoni mangrove sediment, Tanzania. Western Indian Ocean J Mar Sci 1:71–80

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution - reciprocal effects? J Ecol 81:477–487

    Article  Google Scholar 

  • McKee KL, Mendelssohn A, Hester MW (1988) Re-examination of porewater sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia gennillans. Am J Bot 75:1352–1359

    Article  Google Scholar 

  • Mendoza U (2007) Dynamics of phosphorus and sulphur in a mangrove forest in Bragança, North Brazil. PhD Thesis. Bremen University - Germany

  • Morera S (2014) Magnitud, frecuencia y factores que controlan los flujos sedimentarios desde los Andes Centrales Occidentales hacia el oce’ano Pacı’fico peruano. Tesis para la obtencion del grado de Doctor en Recursos Hıdricos. Universidad Nacional Agraria La Molina, Lima, Peru

  • Nickerson NH, Thibodeau FR (1985) Association between porewater sulfide concentrations and the distribution of mangroves. Biogeochemistry 1:183–192

    Article  Google Scholar 

  • Ovalle ARC, Rezende CE, Lacerda LD, Silva CAR (1990) Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuar Coast Shelf Sci 31:639–650

    Article  Google Scholar 

  • Pérez A (2014) Influencia del régimen hídrico y de las condiciones geoquímicas sobre la comunidad y el flujo energético del meiobentos metazoario de los sedimentos intermareales y submareales de los Manglares de Tumbes. Master thesis. Universidad Peruana Cayetano Heredia. Lima - Perú

  • Pérez A, Gutiérrez D, Saldarriaga MS, Sanders JC (2017) Hydrological controls on the biogeochemical dynamics of a Peruvian mangrove system. Hydrobiology 803:69–86. https://doi.org/10.1007/s10750-017-3118-2

    Article  Google Scholar 

  • Sanders CJ, Santos IR, Maher DT, Sadat-Noori M, Schnetger B, Brumsack HJ (2015) Dissolved iron exports from an estuary surrounded by coastal wetlands: can small estuaries be a significant source of Fe to the ocean? Mar Chem 176:75–82

    Article  Google Scholar 

  • Sanders CJ, Santos IR, Maher DT, Breithaupt JL, Smoak JM, Ketterer M, Call M, Sanders L, Eyre BD (2016a) Examining 239-240Pu, 210Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia. J Environ Radioact 151:623–629

    Article  Google Scholar 

  • Sanders CJ, Maher DT, Tait D, Williams D, Holloway C, Sippo J, Santos IR (2016b) Are global mangrove carbon stocks driven by rainfall? J Geophys Res Biogeosci 121:2600 9

    Article  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World Atlas of Mangroves. Earthscan Publications, London, p 319

Download references

Acknowledgements

This study was carried out within the framework of the project “Impacto de la Variabilidad y Cambio Climático en el Ecosistema de Manglares de Tumbes” supported by the “International Development Research Centre (IRDC)” of Canada under management of the “Instituto Geofísico del Perú (IGP),” in cooperation with the “Instituto del Mar del Perú (IMARPE)” and the “Universidad Peruana Cayetano Heredia (UPCH).” The authors acknowledge the “Cátedra CONCYTEC program” in “Ciencias del Mar” that funded the Master Program in Marine Sciences at UPCH. Detailed geochemical analyses were supported by the IRDC and IMARPE. AP is supported by the “Fondo Nacional de Desarrollo Cientifico Tecnologico y de Innovacion Tecnológica” (Fondecyt, Peru), through the MAGNET research program. CJS is supported by the Australian Research Council (DE160100443). We would like to thank our colleagues Dr. Ken Takahashi, Ernesto Fernández, Wilson Carhuapoma, Percy Montero, Rubén Alfaro, Manuel Vera, and Dr. Jorge Cardich who provided us with invaluable help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Pérez or Dimitri Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, A., Gutiérrez, D., Saldarriaga, M.S. et al. Tidally driven sulfidic conditions in Peruvian mangrove sediments. Geo-Mar Lett 38, 457–465 (2018). https://doi.org/10.1007/s00367-018-0549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-018-0549-3

Navigation