Skip to main content

Advertisement

Log in

The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Detailed sedimentological and geochemical records across the Permian–Triassic boundary (PTB) in five offshore wells of the central Persian Gulf served to interpret the end-Permian sea-level change in this region. A decrease in sea level at the PTB was established by petrographical and geochemical study of the boundary. Thin sections showed that Upper Permian strata are composed of dolomite with minor anhydrite, changing into limestone in Lower Triassic sediments. Brine dilution toward the boundary supports sea-level fall in the Permian–Triassic transition, reflected by a decrease in anhydrite content and a shallowing-upward trend from lagoonal to peritidal facies. Isotopic changes at the boundary are in favor of sea-level fall. Changes in both carbon (from about 4 to –1‰) and oxygen (from 2 to –5‰) stable isotopes show negative excursions. The shift in carbon isotope values is a global phenomenon and is interpreted as resulting from carbonate sediment interaction with 12C-rich waters at the end-Permian sea-level fall. However, the oxygen isotope shift is attributed to the effect of meteoric waters with negative oxygen isotope values. The increase in strontium isotope ratios is also consistent with the high rate of terrestrial input at the boundary. The effect of meteoric conditions during diagenesis is evident from vuggy and moldic porosities below the PTB. The following transgression at the base of the Triassic is evident from the presence of reworked fossils and intraclasts resulting from deposition from agitated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdolmaleki J, Tavakoli V (2016) Anachronistic facies in the early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 446:213–224

    Article  Google Scholar 

  • Abdolmaleki J, Tavakoli V, Asadi-Eskandar A (2016) Sedimentological and diagenetic controls on reservoir properties in the Permian–Triassic successions of western Persian Gulf, southern Iran. J Petr Sci Eng 141:90–113

    Article  Google Scholar 

  • Alsharhan AS (1989) Petroleum geology of the United Arab Emirates. J Pet Geol 12:253–288

    Article  Google Scholar 

  • Alsharhan AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam

    Google Scholar 

  • Assereto R, Bosellini A, Fantini Sestini N, Sweet WC (1973) The Permian–Triassic boundary in the southern Alps (Italy). In: Logan A, Hills LV (eds) The Permian and Triassic systems and their mutual boundary. Can Soc Petrol Geol 2:176–199

  • Baud A, Magaritz M, Holser WT (1989) Permian–Triassic of the Tethys: carbon isotope studies. Geol Rundsc 78:649–677

    Article  Google Scholar 

  • Baud A, Atudorei V, Sharp Z (1996) Late Permian and early Triassic evolution of the northern Indian margin: carbon isotope and sequence stratigraphy. Geodin Acta 9:57–77

    Article  Google Scholar 

  • Becker L, Poreda RL, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian–Triassic boundary: evidence from extraterrestrial gases in fullerenes. Science 291:1530–1533

    Article  Google Scholar 

  • Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304:1469–1476

    Article  Google Scholar 

  • Brandner R (1988) The Permian–Triassic boundary section in the Dolomites (southern Alps, Italy), San Antonio section. Bet Geol Bundesanst 15:49–56

    Google Scholar 

  • Brandner R, Donofrio DA, Krainer K, Mostler H, Nazarow MA, Resch W, Stingl V, Weissert H (1986) Events at the Permian–Triassic boundary in the southern and northern Alps. Italian IGCP project 203, Field Conference on Permian and Permian–Triassic Boundary in the South-Alpine Segment of the Western Tethys, and Additional Regional Reports (Brescia, 4–12 July 1986), Abstract Book, p 15

  • Cui Y, Kump LR (2015) Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci Rev 149:5–22

    Article  Google Scholar 

  • Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205:587

    Article  Google Scholar 

  • Dobruskina IA (1994) Triassic floras of Eurasia. Springer, New York

    Google Scholar 

  • Dolenec T, Buser S, Dolenec M (1998) The Permian–Triassic boundary in the Karavanke Mountains (Slovenia): stable isotope variations in the boundary carbonate rocks of the Košutnik Creek and Brsnina section. Geologija 41:17–27

    Article  Google Scholar 

  • Eltom HA, Abdullatif OM, Babalola LO, Bashari MA, Yassin M, Osman MS, Abdulraziq AM (2017) Geochemical characterization of the Permian-Triassic transition at outcrop, central Saudi Arabia. J Pet Geol 39:95–113

    Article  Google Scholar 

  • Erwin DH (1990) Carboniferous-Triassic gastropod diversity patterns and the Permian–Triassic mass extinction. Paleobiology 16:187–203

    Article  Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York

    Google Scholar 

  • Erwin DH (1996) Understanding biotic recoveries: extinction, survival and preservation during the end-Permian mass extinction. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology, pp 398–418

  • Farabegoli E, Perri MC, Posenato R (2007) Environmental and biotic changes across the Permian–Triassic boundary in western Tethys: the Bulla parastratotype, Italy. Glob Planet Chang 55:109–135

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin

    Book  Google Scholar 

  • Forney GG (1975) Permo-Triassic sea-level change. J Geol 83:773–779

    Article  Google Scholar 

  • Gaillot J, Vachard D (2007) The Khuff formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios Paleontol 57:37–223

    Google Scholar 

  • Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli P, Cordey F, Guodon K (2007) Timing of the early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604

    Article  Google Scholar 

  • Gall JC, Grauvogel-Stamm L, Nel A, Papier F (1998) The Permian mass extinction and the Triassic recovery. C R Acad Sci Sér II 326:1–12

    Google Scholar 

  • Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos Trans R Soc Lond Ser B Biol Sci 325:437–455

    Article  Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Hansen HJ (2006) Stable isotopes of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions. Lithos 92:105–116

    Article  Google Scholar 

  • Heydari E, Hassandzadeh J, Wade WJ (2000) Geochemistry of central Tethyan upper Permian and lower Triassic strata, Abadeh region, Iran. Sediment Geol 137:85–99

    Article  Google Scholar 

  • Heydari E, Wade WJ, Hassanzadeh J (2001) Diagenetic origin of carbon and oxygen isotope compositions of Permian–Triassic boundary strata. Sediment Geol 143:191–197

    Article  Google Scholar 

  • Heydari E, Hassanzadeh J, Wade WJ, Ghazi AM (2003) Permian–Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: part 1 - sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 193:405–423

    Article  Google Scholar 

  • Heydari E, Arzani N, Safaei M, Hassanzadeh J (2013) Ocean’s response to a changing climate: clues from variations in carbonate mineralogy across the Permian–Triassic boundary of the Shareza section, Iran. Glob Planet Chang 105:79–90

    Article  Google Scholar 

  • Holser WT, Magaritz M (1987) Events near the Permian–Triassic boundary. Modern Geol 11:155–180

    Google Scholar 

  • Holser WT, Schönlaub HP, Attrep M, Boeckelmann K, Klein P, Magaritz M, Orth CJ, Fenninger A, Jenny C, Kralik M, Mauritsch H, Pak E, Schramm JM, Stattegger K, Schmöller R (1989) A unique geochemical record at the Permian/Triassic boundary. Nature 337:39–44

    Article  Google Scholar 

  • Horacek M, Brandner R, Abart R (2007) Carbon isotope record of the P/T boundary and the lower Triassic in the southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr Palaeoclimatol Palaeoecol 252:347–354

    Article  Google Scholar 

  • Insalaco E, Virgone A, Courme B, Gaillot J, Kamali M, Moallemi A, Lotfpour M, Monibi S (2006) Upper Dalan member and Kangan formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia 11:75–176

    Google Scholar 

  • Knoll AH, Bambach AK, Canfield DE, Grotzinger JP (1996) Comparative earth history and late Permian mass extinction. Science 273:452–457

    Article  Google Scholar 

  • Koehrer B, Aigner T, Forke H, Poppelreiter M (2012) Middle to upper Khuff (sequences KS1 to KS4) outcrop-equivalents in the Oman Mountains: grainstone architecture on a subregional scale. GeoArabia 17(4):59–104

    Google Scholar 

  • Konyuhov AI, Maleki B (2006) The Persian Gulf Basin: geological history, sedimentary formation, and petroleum potential. Lithol Miner Resour 41:344–361

    Article  Google Scholar 

  • Korte C, Kozur HW (2005) Carbon isotope stratigraphy across the Permian/Triassic boundary at Jolfa (NW-Iran), Peitlerkofel (Sas de Pütia, Sass de Putia), Pufels (Bula, Bulla), Tesero (all three southern Alps, Italy) and Gerennavár (Bükk Mts., Hungary). J Alpine Geol 47:119–135

    Google Scholar 

  • Korte C, Kozur HW, Joachimski MM, Strauss H, Veizer J, Schwark L (2004) Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci 93:565–581

    Google Scholar 

  • Korte C, Pande P, Kalia P, Kozur HW, Joachimski MM, Oberhänsli H (2010) Massive volcanism at the Permian–Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci 37:293–311

    Article  Google Scholar 

  • Kozur H (2005) Correlation of the continental uppermost Permian and lower Triassic of the German Basin with the marine scale in the light of new data from China and Iran. Albertiana 33:48–51

    Google Scholar 

  • Kraus SH, Brandner R, Heubeck C, Kozur HW, Struck U, Korte C (2013) Carbon isotope signatures of latest Permian marine successions of the southern Alps suggest a continental runoff pulse enriched in land plant material. Fossil Rec 16:97–109

    Article  Google Scholar 

  • Krull ES, Lehrmann DJ, Druke D, Kessel BJ, Yu Y, Li R (2004) Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315

    Article  Google Scholar 

  • Liao Z, Hu W, Cao J, Wang X, Yao S, Wu H, Wan Y (2016) Heterogeneous volcanism across the Permian–Triassic boundary in South China and implications for the latest Permian mass extinction: new evidence from volcanic ash layers in the lower Yangtze region. J Asian Earth Sci 127:197–210

    Article  Google Scholar 

  • McArthur J (2007) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Felix M, Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012, pp 127–144

  • Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009) Opening of the neo-Tethys Ocean and the Pangea B to Pangea a transformation during the Permian. GeoArabia 14:17–48

    Google Scholar 

  • Newell ND (1967) Revolutions in the history of life. Geol Soc Am Spec Publ 89:63–91

    Google Scholar 

  • Nindre YL, Vaslet D, Metour JL, Bertrand J, Halawani M (2003) Subsidence modelling of the Arabian platform from Permian to Paleogene outcrops. Sediment Geol 156:263–285

    Article  Google Scholar 

  • Palmer MR, Elderfield H (1985) Sr isotope composition of sea water over the past 75 Myr. Nature 314:526–528

    Article  Google Scholar 

  • Perri MC, Farabegoli E (2003) Conodonts across the Permian–Triassic boundary in the southern Alps. Cour Forschungsinst Senck 245:281–313

    Google Scholar 

  • Pin CY, Bassin C (1992) Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials. Anal Chim Acta 269:249–255

    Article  Google Scholar 

  • Rahimpour-Bonab H, Asadi-Eskandar A, Sonei R (2009) Controls of Permian–Triassic boundary over reservoir characteristics of south Pars gas field, Persian Gulf. Geol J 44:341–364

    Google Scholar 

  • Retallack GL (1999) Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol Soc Am Bull 111:52–70

    Article  Google Scholar 

  • Retallack GJ, Jahren AH, Sheldon ND, Chakrabarti R, Metzger CA, Smith RMH (2005) The Permian–Triassic boundary in Antarctica. Antarct Sci 17:241–258

    Article  Google Scholar 

  • Schneebeli-Hermann E, Kürschner WM, Hochuli PA, Ware D, Weissert H, Bernasconi SM, Roohi G, Rehman K, Bucher H (2013) Evidence for atmospheric carbon injection during end-Permian extinction. Geology 41(5):579–582

    Article  Google Scholar 

  • Scholger R, Mauritsch HJ, Brandner R (2000) Permian–Triassic boundary magnetostratigraphy from the southern Alps (Italy). Earth Planet Sci Lett 176:495–508

    Article  Google Scholar 

  • Schopf TJM (1974) Permo-Triassic extinctions: relation to seafloor spreading. J Geol 82:129–143

    Article  Google Scholar 

  • Shen SZ, Cao CQ, Henderson CM, Wang XD, Shi GR, Wang Y, Wang W (2006) End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld 15:3–30

    Article  Google Scholar 

  • Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG (2011) Calibrating the end Permian mass extinction. Science 334:1367–1372

    Article  Google Scholar 

  • Son TH, Koeberl C, Ngoc NL, Huyen DT (2007) The Permian–Triassic boundary sections in northern Vietnam (Nhi Tao and lung cam sections): carbon-isotope excursion and elemental variations indicate major anoxic event. Palaeoworld 16:51–66

    Article  Google Scholar 

  • Song H, Wignall PB, Tong J, Song H, Chen J, Chu D, Tian L, Luo M, Zong K, Chen Y, Lai X, Zhang K, Wang H (2015) Integrated Sr isotope variations and global environmental changes through the late Permian to early late Triassic. Earth Planet Sci Lett 424:140–147

    Article  Google Scholar 

  • Stanley SM (1988) Paleozoic mass extinctions; shared patterns suggest global cooling as a common cause. Am J Sci 288:334–352

    Article  Google Scholar 

  • Sweet WC, Yang Z, Dickins JM, Yin H (1996) Permo-Triassic events in the eastern Tethys - an overview. In: Sweet WC, Yang Z, Dickins JM, Yin H (eds) Permo-Triassic boundary events in the eastern Tethys. Cambridge University Press, Cambridge, pp 1–8

    Google Scholar 

  • Tavakoli V (2015) Chemostratigraphy of the Permian–Triassic strata of the offshore Persian Gulf, Iran. In: Ramkumar M (ed) Chemostratigraphy: concepts, techniques, and applications. Elsevier, Amsterdam, pp 373–393

    Chapter  Google Scholar 

  • Tavakoli V (2017) Application of gamma deviation log (GDL) in sequence stratigraphy of carbonate strata, an example from offshore Persian Gulf, Iran. J Pet Sci Eng 156:868–876

    Article  Google Scholar 

  • Tavakoli V, Rahimpour-Bonab H (2012) Uranium depletion across Permian–Triassic boundary in Persian Gulf and its implications for paleooceanic conditions. Palaeogeogr Palaeoclimatol Palaeoecol 350:101–113

    Article  Google Scholar 

  • Tavakoli V, Rahimpour-Bonab H, Esrafili-Dizaji B (2011) Diagenetic controlled reservoir quality of south Pars gas field, an integrated approach. Compt Rendus Geosci 343:55–71

    Article  Google Scholar 

  • Vaslet D, Nindre LE, Vachard YM, Broutin D, Crasquin-Soleau J, Bertheline S, Gailot M, Halawani J, Al-Husseini M (2005) The Permian-Triassic Khuff formation of Central Saudi Arabia. GeoArabia 10(4):77–134

    Google Scholar 

  • Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17:141–167

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Wang W, Kano A, Okumura T, Ma Y, Matsumoto R, Matsuda N, Ueno K, Chen X, Kakuwa Y, Gharaie MHM, Ilkhchi MR (2007) Isotopic chemostratigraphy of the microbialite-bearing Permian–Triassic boundary section in the Zagros Mountains, Iran. Chem Geol 244:708–714

    Article  Google Scholar 

  • Ward PD, Montgomery DR, Smith R (2000) Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289:1740–1743

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46

    Article  Google Scholar 

  • Wignall PB, Sun YD, Bond DPG, Izon G, Newton RJ, Vedrine S, Widdowson M, Ali JR, Lai L, Jiang HS, Cope H, Bottrell SH (2009) Volcanism, mass extinction and carbon isotope fluctuations in the Permian of China. Science 324:1179–1182

    Article  Google Scholar 

  • Xie SC, Wang YB (2011) Geomicrobiological perspective on the pattern and causes of the 5 million year Permo/Triassic biotic crisis. Front Earth Sci 5:23–36

    Article  Google Scholar 

  • Ya-Sheng W, Hong-Xia J, Jia-Song F (2010) Evidence for sea-level falls in the Permian-Triassic transition in the Ziyun area, South China. Geol J 45:170–185

    Article  Google Scholar 

  • Yin HF, Feng QL, Lai XL, Baud A, Tong JN (2007) The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob Planet Chang 55:1–20

    Article  Google Scholar 

  • Yin H, Jiang H, Xia W, Feng Q, Zhang N, Shen J (2013) The end-Permian regression in South China and its implication on mass extinction. Earth Sci Rev 137:19–33

    Article  Google Scholar 

  • Yin HF, Jiang HS, Xia WC, Feng QL, Zhang N, Shen J (2014) The end-Permian regression in South China and its implication on mass extinction. Earth Sci Rev 137:19–33

    Article  Google Scholar 

  • Ziegler AM, Parrish JM, Yao J, Gyllenhaal ED, Rowley DB, Parrish JT, Shangyou N, Bekker A, Hulver ML (1993) Early Mesozoic phytogeography and climate. Philos Trans B 341:297–305

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Tehran for providing financial support for this research. We thank one anonymous reviewer and the journal editors for constructive comments that greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Tavakoli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, V., Naderi-Khujin, M. & Seyedmehdi, Z. The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran. Geo-Mar Lett 38, 179–192 (2018). https://doi.org/10.1007/s00367-017-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-017-0520-8

Navigation