An Abaqus plugin for evaluation of the Auxetic structure performance


The behavior of Auxetic structures is highly dependent on the geometric parameters of the unit cell. To achieve the desired behavior, it is necessary to perform a parametric study on the unit cell. A conventional parametric study (which includes modeling and analysis with different parameters) is very time consuming and error prone. The Auxetica plugin was produced to solve this problem. Auxetica is an Abaqus plugin developed to estimate Auxetic structures' performance. In this paper, the features and instructions of this plugin are presented. This tool can automatically generate and analyze re-entrant, chiral, (Tri-chiral, Tetra-chiral, Hexa-chiral) and anti-chiral (Tri-anti-chiral and Tetra-anti-chiral) in planar and cylindrical geometries. The plugin tasks can be categorized as follows: the first task is to generate a model based on parametric input. The second task is an automatic analysis and extraction of the target output. The third task is to generate models that are ready for 3D printing and testing. To validate the plugin, an experimental setup is prepared and samples which are made by 3D printing are tested. The simulation result is validated with experimental data before any parametric study would be carried out. Moreover, to understand the plugin functionality better, a parametric study has been done. This plugin helps to perform the parametric study by the user in the shortest time and with the most accuracy with the desired inputs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Zadpoor AA (2016) Mechanical meta-materials. Mater. Horizons 3(5):371–381

    Article  Google Scholar 

  2. 2.

    Barchiesi E, Spagnuolo M, Placidi L (2019) Mechanical metamaterials: a state of the art. Math Mech Sol 24(1):212–234

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Ebrahimi-Nejad S, Kheybari M (2018) Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior. Mater Res Express 5(10):105801

    Article  Google Scholar 

  4. 4.

    Prawoto Y (2012) Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput Mater Sci 58:140–153

    Article  Google Scholar 

  5. 5.

    Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12(9):617–628

    Article  Google Scholar 

  6. 6.

    Evans KE, Alderson K (2000) Auxetic materials: the positive side of being negative. Eng Sci Educ J 9(4):148–154

    Article  Google Scholar 

  7. 7.

    Yang L et al (2015) Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Sol Struct 69:475–490

    Article  Google Scholar 

  8. 8.

    Wang X-T et al (2017) Mechanical properties of 3D re-entrant auxetic cellular structures. Int J Mech Sci 131:396–407

    Article  Google Scholar 

  9. 9.

    Wang Z-P et al (2017) Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput Methods Appl Mech Eng 323:250–271

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Alomarah A, Ruan D, Masood S (2018) Tensile properties of an auxetic structure with re-entrant and chiral features—a finite element study. Int J Adv Manuf Technol 99(9–12):2425–2440

    Article  Google Scholar 

  11. 11.

    Lvov V, et al. (2020) Design and mechanical properties of 3d-printed auxetic honeycomb structure. Mater Today Commun: 101173.

  12. 12.

    Grima JN, Gatt R, Farrugia PS (2008) On the properties of auxetic meta‐tetrachiral structures. Phys Status Sol (b) 245(3): 511–520.

  13. 13.

    Nečemer B et al (2020) Numerical modelling of a chiral auxetic cellular structure under multiaxial loading conditions. Theoret Appl Fract Mech 107:102514

    Article  Google Scholar 

  14. 14.

    Novak N, et al. (2020) Compressive behaviour of chiral auxetic cellular structures at different strain rates. Int J Impact Eng: 103566.

  15. 15.

    Grima JN et al (2012) On the auxetic properties of generic rotating rigid triangles. Proc R Soc A Math Phys Eng Sci 468(2139):810–830

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Shan S et al (2015) Design of planar isotropic negative Poisson’s ratio structures. Extreme Mech Lett 4:96–102

    Article  Google Scholar 

  17. 17.

    Kim J et al (2017) Regularly configured structures with polygonal prisms for three-dimensional auxetic behaviour. Proc R Soc A Math Phys Eng Sci 473(2202):20160926

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Miller W et al (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655

    Article  Google Scholar 

  19. 19.

    He C, Liu P, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31(9):3145–3147

    Article  Google Scholar 

  20. 20.

    Bouaziz O et al (2013) Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater Sci Eng A 570:1–7

    Article  Google Scholar 

  21. 21.

    Grima JN et al (2015) Tailoring graphene to achieve negative Poisson’s ratio properties. Adv Mater 27(8):1455–1459

    Article  Google Scholar 

  22. 22.

    Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci 110(9):3276–3281

    Article  Google Scholar 

  23. 23.

    Bhullar SK et al (2017) Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater Sci Eng C 81:334–340

    Article  Google Scholar 

  24. 24.

    Kolken HM et al (2018) Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials. Mater Horizons 5(1):28–35

    Article  Google Scholar 

  25. 25.

    Yao Y et al (2020) A novel auxetic structure based bone screw design: Tensile mechanical characterization and pullout fixation strength evaluation. Mater Des 188:108424

    Article  Google Scholar 

  26. 26.

    Fey T et al (2015) Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure. Smart Mater Struct 25(1):015017

    Article  Google Scholar 

  27. 27.

    Iyer S, Alkhader M, Venkatesh T (2015) Electromechanical behavior of auxetic piezoelectric cellular solids. Scripta Mater 99:65–68

    Article  Google Scholar 

  28. 28.

    Li Q, Kuang Y, Zhu M (2017) Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv 7(1):015104

    Article  Google Scholar 

  29. 29.

    Ferguson WJ et al (2018) Auxetic structure for increased power output of strain vibration energy harvester. Sens Actu A 282:90–96

    Article  Google Scholar 

  30. 30.

    Gao Q et al (2019) Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading. Mater Des 161:22–34

    Article  Google Scholar 

  31. 31.

    Shruti M, et al. (2020) Compressive behavior of auxetic structural metamaterial for lightweight construction using ANSYS static structural analysis. Mater Today Proc

  32. 32.

    Hamzehei R et al (2020) 2D triangular anti-trichiral structures and auxetic stents with symmetric shrinkage behavior and high energy absorption. Mech Mater 142:103291

    Article  Google Scholar 

  33. 33.

    Sanami M, et al. (2014) Auxetic materials for sports applications. Proc Eng. 72(Supplement C): 453–458.

  34. 34.

    Surjadi JU et al (2019) Mechanical metamaterials and their engineering applications. Adv Eng Mater 21(3):1800864

    Article  Google Scholar 

  35. 35.

    Ahmed MF, Li Y, Zeng C (2019) Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire. Mater Chem Phys 229:167–173

    Article  Google Scholar 

  36. 36.

    Qi D et al (2019) Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extreme Mechanics Letters 28:58–68

    Article  Google Scholar 

  37. 37.

    Hou X, Deng Z, Zhang K (2016) Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech Solida Sin 29(5):490–501

    Article  Google Scholar 

  38. 38.

    Harkati E et al (2017) In-plane elasticity of a multi re-entrant auxetic honeycomb. Compos Struct 180:130–139

    Article  Google Scholar 

  39. 39.

    Wang T et al (2018) Elastic analysis of auxetic cellular structure consisting of re-entrant hexagonal cells using a strain-based expansion homogenization method. Mater Des 160:284–293

    Article  Google Scholar 

  40. 40.

    Lu X, Tan V, Tay T (2020) Auxeticity of monoclinic tetrachiral honeycombs. Compos Struct 241:112067

    Article  Google Scholar 

  41. 41.

    Kolken H, et al. (2020) Mechanical performance of auxetic meta-biomaterials. J Mech Behav Biomed Mater 104: 103658.

  42. 42.

    Eghbali P, Younesian D, Farhangdoust S (2020) Enhancement of piezoelectric vibration energy harvesting with auxetic boosters. Int J Energy Res 44(2):1179–1190

    Article  Google Scholar 

  43. 43.

    Zhang K et al (2020) Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Compos Struct 238:111952

    Article  Google Scholar 

  44. 44.

    Ma C et al (2018) Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading. Mater Des 158:198–212

    Article  Google Scholar 

  45. 45.

    Ruan X, et al. (2020) Chiral constrained stent: effect of structural design on the mechanical and intravascular stent deployment performances. Mech Mater: 103509.

  46. 46.

    Wu W et al (2018) Mechanical properties of anti-tetrachiral auxetic stents. Compos Struct 185:381–392

    Article  Google Scholar 

  47. 47.

    Ruan XL et al (2018) Mechanical design of antichiral-reentrant hybrid intravascular stent. Int J Appl Mech 10(10):1850105

    Article  Google Scholar 

  48. 48.

    Guo Y et al (2020) Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp Sci Technol 98:105662

    Article  Google Scholar 

  49. 49.

    Abaqus. ABAQUS user’s manual. Version 6.14.

  50. 50.

    Tchalla A et al (2013) An ABAQUS toolbox for multiscale finite element computation. Compos B Eng 52:323–333

    Article  Google Scholar 

  51. 51.

    Nesládek M, Španiel M (2017) An Abaqus plugin for fatigue predictions. Adv Eng Softw 103:1–11

    Article  Google Scholar 

  52. 52.

    Riaño L, Joliff Y (2019) An Abaqus TM plug-in for the geometry generation of Representative Volume Elements with randomly distributed fibers and interphases. Compos Struct 209:644–651

    Article  Google Scholar 

  53. 53.

    Omairey SL, Dunning PD, Sriramula S (2019) Development of an ABAQUS plugin tool for periodic RVE homogenisation. Eng Comput 35(2):567–577

    Article  Google Scholar 

  54. 54.

    Jiang Y, et al. (2019) Limiting strain for auxeticity under large compressive Deformation: chiral vs. re-entrant cellular solids. Int J Sol Struct 162: 87–95.

  55. 55.

    Khan SZ, et al. (2020) A novel modified re-entrant honeycomb structure to enhance the auxetic behavior: analytical and numerical study by FEA. Mater Today Proc.

  56. 56.

    Cho H, Seo D, Kim D-N (2019) Mechanics of auxetic materials. In: Schmauder S et al (eds) Handbook of mechanics of materials. Springer Singapore, Singapore, pp 733–757

    Google Scholar 

  57. 57.

    Wu W et al (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950

    Article  Google Scholar 

  58. 58.

    Lorato A et al (2010) The transverse elastic properties of chiral honeycombs. Compos Sci Technol 70(7):1057–1063

    Article  Google Scholar 

  59. 59.

    Mousanezhad D et al (2016) Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach. Theor Appl Mech Lett 6(2):81–96

    Article  Google Scholar 

  60. 60.

    Yu H et al (2019) Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation. Compos Struct 210:327–338

    Article  Google Scholar 

  61. 61.

    Hamzehei R et al (2018) Octagonal auxetic metamaterials with hyperelastic properties for large compressive deformation. Int J Mech Sci 145:96–105

    Article  Google Scholar 

  62. 62.

    Tobajas R, Ibartz E, Gracia L (2016) A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines. In: Proceedings of the 2nd International Electronic Conference on Materials. 2016.

  63. 63.

    Marlow R (2003) A general first-invariant hyperelastic constitutive model. Constit Models Rubber : 157–160.

  64. 64.

    Xia R, et al. (2018) Mechanical properties of 3D isotropic anti‐tetrachiral metastructure. Physica Status Solidi (b) 255(4): 1700343.

  65. 65.

    Chen Y et al (2013) Elasticity of anti-tetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004

    Article  Google Scholar 

  66. 66.

    Tabacu S, Negrea RF, Negrea D (2020) Experimental, numerical and analytical investigation of 2D tetra-anti-chiral structure under compressive loads. Thin Wall Struct 155:106929

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Kadkhodapour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sangsefidi, A.R., Dibajian, S.H., Kadkhodapour, J. et al. An Abaqus plugin for evaluation of the Auxetic structure performance. Engineering with Computers (2021).

Download citation


  • Auxetic planar
  • Auxetic cylindrical
  • Auto plugins
  • 3D printing
  • Re-entrant
  • Chiral
  • Anti-chiral