Symbolic regression metamodel-based optimal design of patient-specific spinal implant (pedicle screw fixation)

Abstract

Pedicle screw-rod insertion is a common surgical procedure used for treating degenerative spinal diseases. Optimized design of such implants is necessary to avoid undue strains at the bone–implant interface. In this work, ideal optimized implant design is defined as one for which the strain difference between intact bone and bone after implantation at six interfacial positions is zero. To achieve this, genetic programming (GP) based symbolic regression (SR) metamodels are built from limited data obtained from expensive but highly accurate finite element (FE) models. The FE models are generated from CT scan data. A cumulative objective function is expressed in terms of GP-based SR metamodels which is then combined with a genetic algorithm (GA) to predict patient-specific optimum implant designs.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Moramarco VD, Palomar AP, Pappalettere C, Doblaré M (2010) An accurate validation of a computational model of a human lumbosacral segment. J Biomech 43:334–342

    Article  Google Scholar 

  2. 2.

    Jain P, Khan MR (2018) Biomechanical study of fused lumbar spine considering bone degeneracy using FEA. Arab J Sci Eng 43:1325–1334

    Article  Google Scholar 

  3. 3.

    Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM, Harris T, Ferrucci L (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538

    Article  Google Scholar 

  4. 4.

    Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  Google Scholar 

  5. 5.

    MacLeod AR, Simpson AHRW, Pankaj P (2016) Age-related optimization of screw placement for reduced loosening risk in locked plating. J Orthop Res 34:1856–1864

    Article  Google Scholar 

  6. 6.

    Reynolds KJ, Cleek TM, Mohtar AA, Hearn TC (2013) Predicting cancellous bone failure during screw insertion. J Biomech 46:1207–1210

    Article  Google Scholar 

  7. 7.

    Inceoglu S, Ferrara L, McLain RF (2004) Pedicle screw fixation strength: pullout versus insertional torque. Spine J 4:513–518

    Article  Google Scholar 

  8. 8.

    Yerby SA, Ehteshami JR, McLain RF (1997) Loading of pedicle screws within the vertebra. J Biomech 30:951–954

    Article  Google Scholar 

  9. 9.

    Chen S-I, Lin R-M, Chang C-H (2003) Biomechanical investigation of pedicle screw–vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 25:275–282

    Article  Google Scholar 

  10. 10.

    MacLeod AR, Pankaj P, Simpson AHRW (2012) Does screw–bone interface modelling matter in finite element analyses? J Biomech 45:1712–1716

    Article  Google Scholar 

  11. 11.

    Kalita K, Dey P, Haldar S, Gao X-Z (2020) Optimizing frequencies of skew composite laminates with metaheuristic algorithms. Eng Comput 36:741–761

    Article  Google Scholar 

  12. 12.

    Kalita K, Dey P, Haldar S (2019) Robust genetically optimized skew laminates. Proc Inst Mech Eng Part C J Mech Eng Sci 233:146–159

    Article  Google Scholar 

  13. 13.

    Hsu C-C, Chao C-K, Wang J-L, Lin J (2006) Multiobjective optimization of tibial locking screw design using a genetic algorithm: evaluation of mechanical performance. J Orthop Res 24:908–916

    Article  Google Scholar 

  14. 14.

    Kalita K, Nasre P, Dey P, Haldar S (2018) Metamodel based multi-objective design optimization of laminated composite plates. Struct Eng Mech 67:301–310

    Google Scholar 

  15. 15.

    Behera RR, Ghadai RK, Kalita K, Banerjee S (2016) Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int J Plastics Technol 20:424–450

    Article  Google Scholar 

  16. 16.

    Ragavendran U, Ghadai RK, Bhoi AK, Ramachandran M, Kalita K (2018) Sensitivity analysis and optimization of EDM process parameters. Trans Can Soc Mech Eng 43:13–25

    Article  Google Scholar 

  17. 17.

    Kalita K, Ragavendran U, Ramachandran M, Bhoi AK (2019) Weighted sum multi-objective optimization of skew composite laminates. Struct Eng Mech 69:21–31

    Google Scholar 

  18. 18.

    Biswas JK, Dey S, Karmakar SK, Roychowdhury A, Datta S (2020) Design of patient specific spinal implant (pedicle screw fixation) using FE analysis and soft computing techniques. Curr Med Imaging 20:20. https://doi.org/10.2174/157340561466618101812253

    Article  Google Scholar 

  19. 19.

    Gao M, Lei W, Wu Z, Liu D, Shi L (2011) Biomechanical evaluation of fixation strength of conventional and expansive pedicle screws with or without calcium based cement augmentation. Clin Biomech 26:238–244

    Article  Google Scholar 

  20. 20

    Biswas JK, Rana M, Majumder S, Karmakar SK, Roychowdhury A (2018) Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: a finite element study. J Orthopaed Sci 23:258–265

    Article  Google Scholar 

  21. 21.

    Shin DS, Lee K, Kim D (2007) Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Comput-Aided Des 39:559–567

    Article  Google Scholar 

  22. 22.

    Tsuang Y-H, Chiang Y-F, Hung C-Y, Wei H-W, Huang C-H, Cheng C-K (2009) Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation_A finite element study. Med Eng Phys 31:565–570

    Article  Google Scholar 

  23. 23.

    Hall SJ, Lysell D (1995) Basic biomechanics, vol 2. Mosby, St Louis

    Google Scholar 

  24. 24.

    Nabhani F, Wake M (2002) Computer modelling and stress analysis of the lumbar spine. J Mater Process Technol 127:40–47

    Article  Google Scholar 

  25. 25.

    Majumder S, Roychowdhury A, Pal S (2007) Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis–femur–soft tissue complex with simplified representation of whole body. Med Eng Phys 29:1167–1178

    Article  Google Scholar 

  26. 26.

    Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 9:674–682

    Article  Google Scholar 

  27. 27.

    Biswas JK, Karmakar S, Majumder S, Banerjee PS, Saha S, Chowdhury AR (2014) Optimization of spinal implant screw for lower vertebra through finite element studies. J Long-term Effects Med Implants 24

  28. 28.

    Koza JR (1992) Genetic programming. MIT Press, Cambridge

    Google Scholar 

  29. 29.

    Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112

    Article  Google Scholar 

  30. 30.

    Barricelli NA et al (1954) Esempi numerici di processi di evoluzione. Methodos 6(21–22):45–68

    MathSciNet  Google Scholar 

  31. 31.

    Ghadai RK, Kalita K, Mondal SC, Swain BP (2018) PECVD process parameter optimization: towards increased hardness of diamond-like carbon thin films. Mater Manuf Process 33:1905–1913

    Article  Google Scholar 

  32. 32.

    Kalita K, Mallick PK, Bhoi AK, Ghadai KR (2018) Optimizing drilling induced delamination in GFRP composites using genetic algorithm and particle swarm optimisation. Adv Compos Lett 27:096369351802700101

    Article  Google Scholar 

  33. 33.

    Kalita K, Shivakoti I, Ghadai RK (2017) Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater Manuf Process 32:1101–1108

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kanak Kalita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, J.K., Kalita, K. & Roychowdhury, A. Symbolic regression metamodel-based optimal design of patient-specific spinal implant (pedicle screw fixation). Engineering with Computers (2020). https://doi.org/10.1007/s00366-020-01090-z

Download citation

Keywords

  • Finite element analysis
  • Implant design
  • Lumbar vertebra
  • Metamodel
  • Optimization
  • Regression