A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method

Abstract

This is a fundamental study on the buckling temperature and post-buckling analysis of functionally graded graphene nanoplatelet-reinforced composite (FG-GPLRC) disk covered with a piezoelectric actuator and surrounded by the nonlinear elastic foundation. The matrix material is reinforced with graphene nanoplatelets (GPLs) at the nanoscale. The displacement–strain of thermal post-buckling of the FG-GPLRC disk via third-order shear deformation theory and using Von Karman nonlinear plate theory is obtained. The equations of the model are derived from Hamilton’s principle and solved by the generalized differential quadrature method. The direct iterative approach is presented for solving the set of equations that includes highly nonlinear parameters. Finally, the results show that the radius ratio of outer to the inner (Ro/Ri), the geometrical parameter of GPLs, nonlinear elastic foundation, externally applied voltage, and piezoelectric thickness play an essential impact on the thermal post-buckling response of the piezoelectrically FG-GPLRC disk surrounded by the nonlinear elastic foundation. Another important consequence is that, when the effect of the elastic foundation is considered, there is a sinusoidal effect from the Ro/Ri parameter on the thermal post-buckling of the disk and this matter is true for both boundary conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    Google Scholar 

  2. 2.

    Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203

    MathSciNet  Google Scholar 

  3. 3.

    Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389

    Google Scholar 

  4. 4.

    Safarpour H, Hajilak ZE, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15:569–583

    Google Scholar 

  5. 5.

    Hashemi HR, Alizadeh A, Oyarhossein MA, Shavalipour A, Makkiabadi M, Habibi M (2019) Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure. Waves Random Complex Media 2019:1–27

    Google Scholar 

  6. 6.

    Esmailpoor Hajilak Z, Pourghader J, Hashemabadi D, Sharifi Bagh F, Habibi M, Safarpour H (2019) Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct Mach 47:521–545

    Google Scholar 

  7. 7.

    Alipour M, Torabi MA, Sareban M, Lashini H, Sadeghi E, Fazaeli A et al (2019) Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech Based Des Struct Mach 2019:1–17

    Google Scholar 

  8. 8.

    Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng Part C J Mech Eng Sci 233:4590–4605

    Google Scholar 

  9. 9.

    Mohammadi A, Lashini H, Habibi M, Safarpour H (2019) Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. J Solid Mech 11:440–453

    Google Scholar 

  10. 10.

    Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134:307

    Google Scholar 

  11. 11.

    Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl 77:2608–2626

    MathSciNet  Google Scholar 

  12. 12.

    Habibi M, Mohammadgholiha M, Safarpour H (2019) Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J Braz Soc Mech Sci Eng 41:221

    Google Scholar 

  13. 13.

    Safarpour H, Pourghader J, Habibi M (2019) Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. J Vib Control 25:1543–1557

    MathSciNet  Google Scholar 

  14. 14.

    Safarpour H, Ghanizadeh SA, Habibi M (2018) Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. Eur Phys J Plus 133:532

    Google Scholar 

  15. 15.

    Chakrapani SK, Barnard DJ, Dayal V (2016) Nonlinear forced vibration of carbon fiber/epoxy prepreg composite beams: Theory and experiment. Compos B Eng 91:513–521. https://doi.org/10.1016/j.compositesb.2016.02.009

    Article  Google Scholar 

  16. 16.

    Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H et al (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Des Struct Mach 2019:1–25. https://doi.org/10.1080/15397734.2019.1705166

    Article  Google Scholar 

  17. 17.

    Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Des Struct Mach 2019:1–30

    Google Scholar 

  18. 18.

    Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng 175:107125

    Google Scholar 

  19. 19.

    Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  20. 20.

    Eyvazian A, Taghizadeh SA, Hamouda AM, Tarlochan F, Moeinifard M, Gobbi M (2019) Buckling and crushing behavior of foam-core hybrid composite sandwich columns under quasi-static edgewise compression. J Sandw Struct Mater 2019:1099636219894665

    Google Scholar 

  21. 21.

    Torabi J, Ansari R (2017) Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: asymmetric versus axisymmetric study. Comput Methods Appl Mech Eng 324:327–347. https://doi.org/10.1016/j.cma.2017.05.025

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Zhong R, Wang Q, Tang J, Shuai C, Qin B (2018) Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos Struct 194:49–67. https://doi.org/10.1016/j.compstruct.2018.03.104

    Article  Google Scholar 

  23. 23.

    Civalek Ö, Baltacıoğlu AK (2018) Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method. Compos Struct 203:458–465. https://doi.org/10.1016/j.compstruct.2018.07.037

    Article  Google Scholar 

  24. 24.

    Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037. https://doi.org/10.1063/1.1466880

    Article  Google Scholar 

  25. 25.

    Cougo CMS, Pezzin SH, Pachekoski WM, Amico SC (2019) Multiscale hybrid composites with carbon-based nanofillers. In: Asiri AM, Khan A, Jawaid M (eds) Nanocarbon and its composites. Woodhead Publishing, Sawston, pp 449–470. https://doi.org/10.1016/B978-0-08-102509-3.00014-6

    Google Scholar 

  26. 26.

    Kim M, Park Y-B, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69:335–342. https://doi.org/10.1016/j.compscitech.2008.10.019

    Article  Google Scholar 

  27. 27.

    Inam F, Wong DWY, Kuwata M, Peijs T (2010) Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J Nanomater 2010:9. https://doi.org/10.1155/2010/453420

    Article  Google Scholar 

  28. 28.

    Guo J, Lu C, An F, He S (2012) Preparation and characterization of carbon nanotubes/carbon fiber hybrid material by ultrasonically assisted electrophoretic deposition. Mater Lett 66:382–384. https://doi.org/10.1016/j.matlet.2011.09.022

    Article  Google Scholar 

  29. 29.

    Li W, Dichiara A, Zha J, Su Z, Bai J (2014) On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos Sci Technol 103:36–43. https://doi.org/10.1016/j.compscitech.2014.08.016

    Article  Google Scholar 

  30. 30.

    Ahmadi M, Ansari R, Rouhi H (2018) Studying buckling of composite rods made of hybrid carbon fiber/carbon nanotube reinforced polyimide using multiscale FEM. Sci Iran. https://doi.org/10.24200/sci.2018.5722.1444

    Article  Google Scholar 

  31. 31.

    Karimiasl M, Ebrahimi F, Akgöz B (2019) Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos Struct 223:110988. https://doi.org/10.1016/j.compstruct.2019.110988

    Article  Google Scholar 

  32. 32.

    Ebrahimi F, Dabbagh A (2019) An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Eng Comput. https://doi.org/10.1007/s00366-019-00840-y

    Article  Google Scholar 

  33. 33.

    Haghgoo M, Hassanzadeh-Aghdam M, Ansari R (2020) A comprehensive evaluation of piezoresistive response and percolation behavior of multiscale polymer-based nanocomposites. Compos A Appl Sci Manuf 130:105735

    Google Scholar 

  34. 34.

    Dabbagh A, Rastgoo A, Ebrahimi F (2020) Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mech Based Des Struct Mach 2020:1–27

    Google Scholar 

  35. 35.

    Dabbagh A, Rastgoo A, Ebrahimi F (2020) Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory. Eng Comput 2020:1–20

    Google Scholar 

  36. 36.

    Hassanzadeh-Aghdam M-K, Ansari R, Darvizeh A (2019) Multi-stage micromechanical modeling of effective elastic properties of carbon fiber/carbon nanotube-reinforced polymer hybrid composites. Mech Adv Mater Struct 26:2047–2061

    Google Scholar 

  37. 37.

    Shi X, Hassanzadeh-Aghdam M, Ansari R (2019) A comprehensive micromechanical analysis of the thermoelastic properties of polymer nanocomposites containing carbon nanotubes with fully random microstructures. Mech Adv Mater Struct 2019:1–12

    Google Scholar 

  38. 38.

    Ebrahimi F, Dabbagh A (2019) Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin–Tsai homogenization model. Compos B Eng 173:106955

    Google Scholar 

  39. 39.

    Hassanzadeh-Aghdam M, Mahmoodi M, Jamali J, Ansari R (2019) A new micromechanical method for the analysis of thermal conductivities of unidirectional fiber/CNT-reinforced polymer hybrid nanocomposites. Compos B Eng 175:107137

    Google Scholar 

  40. 40.

    Dabbagh A, Rastgoo A, Ebrahimi F (2019) Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Struct 140:304–317

    Google Scholar 

  41. 41.

    Rafiee M, Nitzsche F, Labrosse M (2018) Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: Nonlinear bending, thermal post-buckling and large amplitude vibration. Int J Non-Linear Mech 103:104–112

    Google Scholar 

  42. 42.

    Rafiee M, Nitzsche F, Labrosse M (2016) Rotating nanocomposite thin-walled beams undergoing large deformation. Compos Struct 150:191–199

    Google Scholar 

  43. 43.

    He X, Rafiee M, Mareishi S, Liew K (2015) Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Compos Struct 131:1111–1123

    Google Scholar 

  44. 44.

    Rafiee M, Liu X, He X, Kitipornchai S (2014) Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib 333:3236–3251

    Google Scholar 

  45. 45.

    Moayedi H, Hayati S (2018) Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput 66:208–219

    Google Scholar 

  46. 46.

    Moayedi H, Aghel B, Vaferi B, Foong LK, Bui DT (2020) The feasibility of Levenberg–Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines. J Pet Sci Eng 185:106634

    Google Scholar 

  47. 47.

    Moayedi H, Rezaei A (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31:327–336

    Google Scholar 

  48. 48.

    Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

    Google Scholar 

  49. 49.

    Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine. Appl Soft Comput 86:105884

    Google Scholar 

  50. 50.

    Safarpour H, Barooti M, Ghadiri M (2019) Influence of rotation on vibration behavior of a functionally graded moderately thick cylindrical nanoshell considering initial hoop tension. J Solid Mech 11:254–271

    Google Scholar 

  51. 51.

    Ebrahimi F, Safarpour H (2018) Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects. Wind Struct 27:431–438

    Google Scholar 

  52. 52.

    Mohammadi K, Barouti MM, Safarpour H, Ghadiri M (2019) Effect of distributed axial loading on dynamic stability and buckling analysis of a viscoelastic DWCNT conveying viscous fluid flow. J Braz Soc Mech Sci Eng 41:93

    Google Scholar 

  53. 53.

    SafarPour H, Hosseini M, Ghadiri M (2017) Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: an exact solution. J Therm Stress 40:1353–1367

    Google Scholar 

  54. 54.

    Safarpour H, Mohammadi K, Ghadiri M, Barooti MM (2018) Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM. Int J Struct Stab Dyn 18:1850123

    MathSciNet  Google Scholar 

  55. 55.

    Safarpour H, Mohammadi K, Ghadiri M (2017) Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution. J Mech Behav Mater 26:9–24

    Google Scholar 

  56. 56.

    SafarPour H, Ghanbari B, Ghadiri M (2019) Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. Appl Math Model 65:428–442

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Shojaeefard M, Mahinzare M, Safarpour H, Googarchin HS, Ghadiri M (2018) Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Appl Math Model 61:255–279

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Ghadiri M, Safarpour H (2016) Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl Phys A 122:833

    Google Scholar 

  59. 59.

    Ghadiri M, Shafiei N, Safarpour H (2017) Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol 23:1045–1065

    Google Scholar 

  60. 60.

    Abdelmalek Z, Karbon M, Eyvazian A, Forooghi A, Safarpour H, Tlili I (2020) On the dynamics of a curved microtubule-associated proteins by considering viscoelastic properties of the living biological cells. J Biomol Struct Dyn 2020:1–15

    Google Scholar 

  61. 61.

    Keleshteri MM, Asadi H, Aghdam MM (2017) Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct 171:100–112. https://doi.org/10.1016/j.compstruct.2017.01.048

    Article  Google Scholar 

  62. 62.

    Keleshteri MM, Asadi H, Wang Q (2017) Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Comput Methods Appl Mech Eng 325:689–710. https://doi.org/10.1016/j.cma.2017.07.036

    MathSciNet  Article  MATH  Google Scholar 

  63. 63.

    Keleshteri MM, Asadi H, Wang Q (2017) Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation. Thin-Walled Struct 120:203–214. https://doi.org/10.1016/j.tws.2017.08.035

    Article  Google Scholar 

  64. 64.

    Yang B, Yang J, Kitipornchai S (2017) Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity. Meccanica 52:2275–2292

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Safarpour M, Rahimi AR, Alibeigloo A (2019) Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1646137

    Article  Google Scholar 

  66. 66.

    Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A et al (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct 154:106840

    Google Scholar 

  67. 67.

    Alibeigloo A (2013) Three-dimensional free vibration analysis of multi-layered graphene sheets embedded in elastic matrix. J Vib Control 19:2357–2371. https://doi.org/10.1177/1077546312456056

    MathSciNet  Article  Google Scholar 

  68. 68.

    Wu H, Drzal LT (2014) Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite. Mater Chem Phys 146:26–36. https://doi.org/10.1016/j.matchemphys.2014.02.038

    Article  Google Scholar 

  69. 69.

    Motezaker M, Eyvazian A (2020) Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs. Steel Compos Struct 34:289–297

    Google Scholar 

  70. 70.

    Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A (2019) Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1666723

    Article  Google Scholar 

  71. 71.

    Al-Maliki AF, Faleh NM, Alasadi AA (2019) Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities. Struct Monit Maint 6:147–159

    Google Scholar 

  72. 72.

    Batou B, Nebab M, Bennai R, Atmane HA, Tounsi A, Bouremana M (2019) Wave dispersion properties in imperfect sigmoid plates using various HSDTs. Steel Compos Struct 33:699–716

    Google Scholar 

  73. 73.

    Ahmed RA, Fenjan RM, Faleh NM (2019) Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomech Eng 17:175–180

    Google Scholar 

  74. 74.

    Eyvazian A, Hamouda AM, Tarlochan F, Mohsenizadeh S, Dastjerdi AA (2019) Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform graphene platelet with magnetorheological fluid core. Steel Compos Struct 33:891–906

    Google Scholar 

  75. 75.

    Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vib Control 2020:1077546320923930

    Google Scholar 

  76. 76.

    Mohammadgholiha M, Shokrgozar A, Habibi M, Safarpour H (2019) Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. J Vib Control 25:2627–2640

    MathSciNet  Google Scholar 

  77. 77.

    Keleshteri M, Asadi H, Aghdam M (2019) Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation. Thin-Walled Struct 135:453–462

    Google Scholar 

  78. 78.

    Ghayesh MH (2018) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350

    Google Scholar 

  79. 79.

    Ghayesh MH (2019) Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech A Solids 73:492–499

    MathSciNet  MATH  Google Scholar 

  80. 80.

    Ghayesh MH, Amabili M, Farokhi H (2013) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14

    MathSciNet  MATH  Google Scholar 

  81. 81.

    Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Google Scholar 

  82. 82.

    Ghayesh MH (2019) Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams. Eur Phys J Plus 134:401

    Google Scholar 

  83. 83.

    Ghayesh MH (2019) Nonlinear oscillations of FG cantilevers. Appl Acoust 145:393–398

    Google Scholar 

  84. 84.

    Motezaker M, Eyvazian A (2020) Buckling load optimization of beam reinforced by nanoparticles. Struct Eng Mech 73:481–486

    Google Scholar 

  85. 85.

    Eyvazian A, Habibi MK, Hamouda AM, Hedayati R (2014) Axial crushing behavior and energy absorption efficiency of corrugated tubes. Mater Des 54:1028–1038

    Google Scholar 

  86. 86.

    Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct 150:106683

    Google Scholar 

  87. 87.

    Zhang X, Shamsodin M, Wang H, NoormohammadiArani O, Khan AM, Habibi M et al (2020) Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J Biomol Struct Dyn 2020:1–26

    Google Scholar 

  88. 88.

    Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R (2019) Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Des Struct Mach 2019:1–18

    Google Scholar 

  89. 89.

    Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25:382–389

    Google Scholar 

  90. 90.

    Fazaeli A, Habibi M, Ekrami A (2016) Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite–pearlite steel with the same chemical composition. Metall Eng 19(2):84–93

    Google Scholar 

  91. 91.

    Cheshmeh E, Karbon M, Eyvazian A, Jung DW, Habibi M, Safarpour M (2020) Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory. Mech Based Des Struct Mach 2020:1–24

    Google Scholar 

  92. 92.

    Najaafi N, Jamali M, Habibi M, Sadeghi S, Jung DW, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn 2020:1–12

    Google Scholar 

  93. 93.

    Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, Won Jung D et al (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach 2020:1–23

    Google Scholar 

  94. 94.

    Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) Stability and dynamics of viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 12:586

    Google Scholar 

  95. 95.

    Ebrahimi F, Mohammadi K, Barouti MM, Habibi M (2019) Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media 2019:1–27

    Google Scholar 

  96. 96.

    Wang Q (2002) On buckling of column structures with a pair of piezoelectric layers. Eng Struct 24:199–205

    Google Scholar 

  97. 97.

    Oyarhossein MA, Alizadeh A, Habibi M, Makkiabadi M, Daman M, Safarpour H et al (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10:1–19

    Google Scholar 

  98. 98.

    Lori ES, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput 2020:1–20

    Google Scholar 

  99. 99.

    Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput 2020:1–16

    Google Scholar 

  100. 100.

    Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput 2020:1–20

    Google Scholar 

  101. 101.

    Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135:144

    Google Scholar 

  102. 102.

    Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2019) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 2019:1–13

    Google Scholar 

  103. 103.

    Adamian A, Safari KH, Sheikholeslami M, Habibi M, Al-Furjan M, Chen G (2020) Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel. Appl Sci 10:3251

    Google Scholar 

  104. 104.

    Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020). Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

  105. 105.

    Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13:1707

    Google Scholar 

  106. 106.

    Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong LK (2019) Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Int J Appl Mech 11(10):1950102. https://doi.org/10.1142/S1758825119501023

    Article  Google Scholar 

  107. 107.

    Moayedi H, Aliakbarlou H, Jebeli M, NoormohammadiArani O, Habibi M, Safarpour H et al (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech 12:2050010

    Google Scholar 

  108. 108.

    Hamad LB, Khalaf BS, Faleh NM (2019) Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials. Adv Mater Res 8:179–196

    Google Scholar 

  109. 109.

    Salah F, Boucham B, Bourada F, Benzair A, Bousahla AA, Tounsi A (2019) Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model. Steel Compos Struct 33:805–822

    Google Scholar 

  110. 110.

    Ke LL, Wang YS, Reddy JN (2014) Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos Struct 116:626–636. https://doi.org/10.1016/j.compstruct.2014.05.048

    Article  Google Scholar 

  111. 111.

    Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach 2019:1–19

    Google Scholar 

  112. 112.

    Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H et al (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75

    Google Scholar 

  113. 113.

    Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  114. 114.

    Zhao X, Zhang X, Cai Z, Tian X, Wang X, Huang Y et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    Google Scholar 

  115. 115.

    Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18:797–807

    Google Scholar 

  116. 116.

    Liew K, Yang J, Kitipornchai S (2003) Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int J Solids Struct 40:3869–3892

    MATH  Google Scholar 

  117. 117.

    Shi-rong L, Chang-jun C (1991) Thermal-buckling of thin annular plates under multiple loads. Appl Math Mech 12:301–308

    Google Scholar 

  118. 118.

    Tani J (1981) Elastic instability of a heated annular plate under lateral pressure. J Appl Mech Trans ASME 48:399–403

    Google Scholar 

  119. 119.

    Kiani Y, Eslami M (2013) An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos B Eng 45:101–110

    Google Scholar 

  120. 120.

    Yang J, Chen D, Kitipornchai S (2018) Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos Struct 193:281–294

    Google Scholar 

  121. 121.

    Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669

    Google Scholar 

  122. 122.

    Hosseini S, Habibi M, Assempour A (2018) Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers. Modares Mech Eng 18:174–181

    Google Scholar 

  123. 123.

    Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2018) Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl 232:625–636

    Google Scholar 

  124. 124.

    Habibi M, Payganeh Gh (2018) Experimental and finite element investigation of titanium tubes hot gas forming and production of square cross-section specimens. Aerosp Mech J 14(2):89–99

    Google Scholar 

  125. 125.

    Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Google Scholar 

  126. 126.

    Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R (2017) Determination of forming limit diagram using two modified finite element models. Mech Eng 48:141–144

    Google Scholar 

  127. 127.

    Ghazanfari A, Assempour A, Habibi M, Hashemi R (2016) Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak–Kuczynski model. Modares Mech Eng 16:137–143

    Google Scholar 

Download references

Acknowledgements

Funding was provide by National Natural Science Foundation of China (Grant No. 51675148).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Habibi or Abdelouahed Tounsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Furjan, M.S.H., Safarpour, H., Habibi, M. et al. A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Engineering with Computers (2020). https://doi.org/10.1007/s00366-020-01088-7

Download citation

Keywords

  • Nonlinear foundation
  • Thermal post-buckling
  • FG-GPLRC
  • Von Karman-type geometry nonlinearity
  • GDQM