A continuum viscoelastic model of Timoshenko NSGT nanobeams

Abstract

Developed and solved in this article, for the first time, is a coupled continuum viscoelastic model for Timoshenko nonlocal strain gradient theory (NSGT)-based nanobeams; this is performed using a finite difference analysis (FDA). The viscosity of infinitesimal elements of the Timoshenko NSGT nanobeams is incorporated via the Kelvin–Voigt scheme (as a two-parameter rheological scheme) for both the transverse/longitudinal/rotational motions. The NSGT for the normal/shear stress fields is used for ultrasmall size influences on the continuum model. Rotary inertia is automatically present due to the Timoshenko-type rotation. The viscosity in the Timoshenko NSGT nanobeam is responsible for energy dissipation formulated via negative work. Hamilton’s balance scheme is utilised and resulted in the coupled continuum viscoelastic dynamic model for Timoshenko NSGT nanobeams, which is solved via a FDA for nonlinear mechanics. A nonlinear bending test is conducted via development of a finite element method model in the absence of the NSGT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Referencess

  1. 1.

    Ebrahimi F, Hosseini SHS (2019) Nonlinear vibration and dynamic instability analysis nanobeams under thermo-magneto-mechanical loads: a parametric excitation study. Eng Comput. https://doi.org/10.1007/s00366-019-00830-0

    Article  Google Scholar 

  2. 2.

    Rajasekaran S (2018) Analysis of axially functionally graded nano-tapered Timoshenko beams by element-based Bernstein pseudospectral collocation (EBBPC). Eng Comput 34:543–563

    Article  Google Scholar 

  3. 3.

    Ghayesh MH, Farajpour A (2019) A review on the mechanics of functionally graded nanoscale and microscale structures. Int J Eng Sci 137:8–36

    MathSciNet  Article  Google Scholar 

  4. 4.

    Farajpour A, Ghayesh MH, Farokhi H (2018) A review on the mechanics of nanostructures. Int J Eng Sci 133:231–263

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ahmadi H (2019) Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation. Eng Comput 35:1491–1505

    Article  Google Scholar 

  6. 6.

    Dednam W, Botha AE (2015) Optimized shooting method for finding periodic orbits of nonlinear dynamical systems. Eng Comput 31:749–762

    Article  Google Scholar 

  7. 7.

    Halbach A, Geuzaine C (2018) Steady-state, nonlinear analysis of large arrays of electrically actuated micromembranes vibrating in a fluid. Eng Comput 34:591–602

    Article  Google Scholar 

  8. 8.

    Li D, Xu J (2005) A new method to determine the periodic orbit of a nonlinear dynamic system and its period. Eng Comput 20:316–322

    Article  Google Scholar 

  9. 9.

    Parhi A, Singh BN, Panda SK (2019) Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment. Eng Comput. https://doi.org/10.1007/s00366-019-00903-0

    Article  Google Scholar 

  10. 10.

    Pourgholi R, Tabasi SH, Zeidabadi H (2018) Numerical techniques for solving system of nonlinear inverse problem. Eng Comput 34:487–502

    Article  Google Scholar 

  11. 11.

    Dehghan M, Ebrahimi F, Vinyas M (2019) Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes. Eng Comput

  12. 12.

    Jena SK, Chakraverty S, Malikan M (2019) Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Eng Comput

  13. 13.

    Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35:1297–1316

    Article  Google Scholar 

  14. 14.

    Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35:1173–1189

    Article  Google Scholar 

  15. 15.

    Trabelssi M, El-Borgi S, Fernandes R, Ke L-L (2019) Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation. Compos B Eng 157:331–349

    Article  Google Scholar 

  16. 16.

    Robinson MTA, Adali S (2018) Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler–-Pasternak foundation. Compos Struct 206:95–103

    Article  Google Scholar 

  17. 17.

    Managheb S, Ziaei-Rad S, Tikani R (2018) Energy harvesting from vibration of Timoshenko nanobeam under base excitation considering flexoelectric and elastic strain gradient effects. J Sound Vib 421:166–189

    Article  Google Scholar 

  18. 18.

    Alves M, Ribeiro P (2017) Non-linear modes of vibration of Timoshenko nanobeams under electrostatic actuation. Int J Mech Sci 130:188–202

    Article  Google Scholar 

  19. 19.

    Yang L, Fan T, Yang L, Han X, Chen Z (2017) Bending of functionally graded nanobeams incorporating surface effects based on Timoshenko beam model. Theor Appl Mech Lett 7:152–158

    Article  Google Scholar 

  20. 20.

    Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    MathSciNet  Article  Google Scholar 

  21. 21.

    Ansari R, Mohammadi V, Faghih Shojaei M, Gholami R, Rouhi H (2014) Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur J Mech A Solids 45:143–152

    MathSciNet  Article  Google Scholar 

  22. 22.

    Jazi AJ, Shahriari B, Torabi K (2017) Exact closed form solution for the analysis of the transverse vibration mode of a nano-Timoshenko beam with multiple concentrated masses. Int J Mech Sci 131:728–743

    Article  Google Scholar 

  23. 23.

    Ghayesh MH (2012) Nonlinear dynamic response of a simply-supported Kelvin–-Voigt viscoelastic beam, additionally supported by a nonlinear spring. Nonlinear Anal Real World Appl 13:1319–1333

    MathSciNet  Article  Google Scholar 

  24. 24.

    Ghayesh MH (2019) Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci 135:75–85

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ghayesh MH, Kazemirad S, Darabi MA (2011) A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions. J Sound Vib 330:5382–5400

    Article  Google Scholar 

  26. 26.

    Ghayesh MH, Kazemirad S, Reid T (2012) Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: a general solution procedure. Appl Math Model 36:3299–3311

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ghayesh MH (2019) Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech A Solids 73:492–499

    MathSciNet  Article  Google Scholar 

  28. 28.

    Ghayesh MH, Farokhi H (2018) On the viscoelastic dynamics of fluid-conveying microtubes. Int J Eng Sci 127:186–200

    MathSciNet  Article  Google Scholar 

  29. 29.

    Farokhi H, Ghayesh MH, Gholipour A, Tavallaeinejad M (2017) Nonlinear oscillations of viscoelastic microplates. Int J Eng Sci 118:56–69

    MathSciNet  Article  Google Scholar 

  30. 30.

    Farokhi H, Ghayesh MH (2017) Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Des 13:43–55

    Article  Google Scholar 

  31. 31.

    Ghayesh MH (2019) Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct 225:110974

    Article  Google Scholar 

  32. 32.

    Ghayesh MH, Amabili M (2013) Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance. Nonlinear Dyn 73:39–52

    MathSciNet  Article  Google Scholar 

  33. 33.

    Ghayesh MH, Amabili M, Farokhi H (2013) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14

    MathSciNet  Article  Google Scholar 

  34. 34.

    Ghayesh MH, Amabili M (2013) Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support. Mech Mach Theory 67:1–16

    Article  Google Scholar 

  35. 35.

    Ghayesh MH (2019) Resonant vibrations of FG viscoelastic imperfect Timoshenko beams. JVC 25:1823–1832

    MathSciNet  Google Scholar 

  36. 36.

    Kazemirad S, Ghayesh MH, Amabili M (2013) Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch Appl Mech 83:25–42

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gholipour, A., Ghayesh, M.H. & Hussain, S. A continuum viscoelastic model of Timoshenko NSGT nanobeams. Engineering with Computers (2020). https://doi.org/10.1007/s00366-020-01017-8

Download citation

Keywords

  • Timoshenko NSGT
  • Nanobeam
  • Finite element analysis
  • Continuum mechanics
  • Viscoelastic