Enhanced leadership-inspired grey wolf optimizer for global optimization problems

Abstract

Grey wolf optimizer (GWO) is a recently developed population-based algorithm in the area of nature-inspired optimization. The leading hunters in GWO are responsible for exploring the new promising regions of the search space. However, in some circumstances, the classical GWO suffers from the problem of premature convergence due to the stagnation at sub-optimal solutions. The insufficient guidance of search in GWO leads to slow convergence. Therefore, to alleviate from all the above issues, an improved leadership-based GWO called GLF–GWO is introduced in the present paper. In GLF–GWO, the leaders are updated through Levy-flight search mechanism. The proposed GLF–GWO algorithm enhances the search efficiency of leading hunters in GWO and provides better guidance to accelerate the search process of GWO. In the GLF–GWO algorithm, the greedy selection is introduced to avoid their divergence from discovered promising areas of the search space. To validate the efficiency of the GLF–GWO, the standard benchmark suite IEEE CEC 2014 and IEEE CEC 2006 are taken. The proposed GLF–GWO algorithm is also employed to solve some real-engineering problems. Experimental results reveal that the proposed GLF–GWO algorithms significantly improve the performance of the classical version of GWO.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine and human science, 1995. MHS’95, Proceedings of the sixth international symposium on. IEEE, pp 39–43

  2. 2.

    Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano

  3. 3.

    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  5. 5.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  6. 6.

    Wolpert DH, Macready WG (1995) No free lunch theorems for search, vol 10. Technical Report SFI-TR-95-02-010, Santa Fe Institute

  7. 7.

    Madadi A, Motlagh MM (2014) Optimal control of DC motor using grey wolf optimizer algorithm. TJEAS J 4(4):373–379

    Google Scholar 

  8. 8.

    Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161

    Google Scholar 

  9. 9.

    Song X, Tang L, Zhao S, Zhang X, Li L, Huang J, Cai W (2015) Grey wolf optimizer for parameter estimation in surface waves. Soil Dyn Earthq Eng 75:147–157

    Google Scholar 

  10. 10.

    Sulaiman MH, Mustaffa Z, Mohamed MR, Aliman O (2015) Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl Soft Comput 32:286–292

    Google Scholar 

  11. 11.

    Guha D, Roy PK, Banerjee S (2016) Load frequency control of interconnected power system using grey wolf optimization. Swarm Evolut Comput 27:97–115

    Google Scholar 

  12. 12.

    Zhang S, Zhou Y, Li Z, Pan W (2016) Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv Eng Softw 99:121–136

    Google Scholar 

  13. 13.

    Kamboj VK, Bath SK, Dhillon JS (2016) Solution of non-convex economic load dispatch problem using grey wolf optimizer. Neural Comput Appl 27(5):1301–1316

    Google Scholar 

  14. 14.

    Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  16. 16.

    Muangkote N, Sunat K, Chiewchanwattana S (2014) An improved grey wolf optimizer for training q-Gaussian radial basis functional-link nets. In: Computer science and engineering conference (ICSEC), 2014 international. IEEE, pp 209–214

  17. 17.

    El-Fergany AA, Hasanien HM (2015) Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr Power Compon Syst 43(13):1548–1559

    Google Scholar 

  18. 18.

    Jayabarathi T, Raghunathan T, Adarsh BR, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641

    Google Scholar 

  19. 19.

    Rodríguez L, Castillo O, Soria J, Melin P, Valdez F, Gonzalez CI et al (2017) A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Appl Soft Comput 57:315–328

    Google Scholar 

  20. 20.

    Yang B, Zhang X, Yu T, Shu H, Fang Z (2017) Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine. Energy Convers Manag 133:427–443

    Google Scholar 

  21. 21.

    Tawhid MA, Ali AF (2017) A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet Comput 9(4):347–359

    Google Scholar 

  22. 22.

    Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Google Scholar 

  23. 23.

    Lu C, Gao L, Li X, Xiao S (2017) A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Eng Appl Artif Intell 57:61–79

    Google Scholar 

  24. 24.

    Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput 60:115–134

    Google Scholar 

  25. 25.

    Tawhid MA, Ali AF (2018) Multidirectional grey wolf optimizer algorithm for solving global optimization problems. Int J Comput Intell Appl 17(04):1850022

    Google Scholar 

  26. 26.

    Tu Q, Chen X, Liu X (2018) Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl Soft Comput 76:16–30

    Google Scholar 

  27. 27.

    Singh D, Dhillon JS (2018) Ameliorated grey wolf optimization for economic load dispatch problem. Energy 169:398–419

    Google Scholar 

  28. 28.

    Saxena A, Kumar R, Das S (2019) β-Chaotic map enabled grey wolf optimizer. Appl Soft Comput 75:84–105

    Google Scholar 

  29. 29.

    Qais MH, Hasanien HM, Alghuwainem S (2018) Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl Soft Comput 69:504–515

    Google Scholar 

  30. 30.

    Gupta S, Deep K (2019) An efficient grey wolf optimizer with opposition-based learning and chaotic local search for integer and mixed-integer optimization problems. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-03806-w

    Article  Google Scholar 

  31. 31.

    Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Proc 88(3):192–197

    Google Scholar 

  32. 32.

    Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome

    Google Scholar 

  33. 33.

    Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    MATH  Google Scholar 

  34. 34.

    Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  35. 35.

    Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CC, Deb K (2006) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. J Appl Mech 41(8):8–31

    Google Scholar 

  36. 36.

    Mittal N, Singh U, Sohi BS (2016) Modified grey wolf optimizer for global engineering optimization. Appl Comput Intell Soft Comput 2016:8

    Google Scholar 

  37. 37.

    Long W, Liang X, Cai S, Jiao J, Zhang W (2017) A modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problems. Neural Comput Appl 28(1):421–438

    Google Scholar 

  38. 38.

    Pradhan M, Roy PK, Pal T (2017) Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system. Ain Shams Eng J 9(4):2015–2025

    Google Scholar 

  39. 39.

    Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

    Google Scholar 

  40. 40.

    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Google Scholar 

  41. 41.

    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  42. 42.

    Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1–13

    Google Scholar 

  43. 43.

    Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229

    Google Scholar 

  44. 44.

    Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  45. 45.

    Sharma TK, Pant M, Singh VP (2012) Improved local search in artificial bee colony using golden section search. arXiv preprint arXiv:1210.6128

  46. 46.

    Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Google Scholar 

  47. 47.

    Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Google Scholar 

  48. 48.

    Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Aarts E, Lenstra JK (eds) Simulated annealing: theory and applications. Springer, Dordrecht, pp 7–15

    Google Scholar 

  49. 49.

    Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Evolutionary computation, 2005. The 2005 IEEE Congress on. IEEE, vol 2, pp 1769–1776

  50. 50.

    Nowcki H (1974) Optimization in pre-contract ship design. In: Fujita Y, Lind K, Williams TJ (eds) Computer applications in the automation of shipyard operation and ship design, vol 2. NorthHolland. Elsevier, New York, pp 327–338

    Google Scholar 

  51. 51.

    Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Google Scholar 

  52. 52.

    Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748

    Google Scholar 

  53. 53.

    Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9):1583–1599

    MATH  Google Scholar 

  54. 54.

    Gandomi AH, Yang XS (2011) Benchmark problems in structural optimization. In: Koziel S, Yang X-S (eds) Computational optimization, methods and algorithms. Springer, Berlin, pp 259–281

    Google Scholar 

  55. 55.

    Mezura-Montes E, Coello CC, Landa-Becerra R (2003) Engineering optimization using simple evolutionary algorithm. In: Tools with artificial intelligence, 2003. Proceedings. 15th IEEE international conference on. IEEE, pp 149–156

  56. 56.

    Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34(4):341–354

    Google Scholar 

Download references

Acknowledgements

The first author is grateful for the financial support provided by Ministry of Human Resource and Development (MHRD), Government of India (Grant no. MHR-02-41-113-429).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shubham Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Deep, K. Enhanced leadership-inspired grey wolf optimizer for global optimization problems. Engineering with Computers 36, 1777–1800 (2020). https://doi.org/10.1007/s00366-019-00795-0

Download citation

Keywords

  • Numerical optimization
  • Swarm intelligence
  • No free lunch theorem
  • Levy-flight search