Skip to main content
Log in

Automated low-order to high-order mesh conversion

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

An algorithm is presented for the CAD-free conversion of linear unstructured meshes into curved high-order meshes, which are necessary for high-order flow simulations. The algorithm operates via three steps: (1) autonomous detection of feature curves along the mesh surface, (2) reconstruction of the surface curvature from the combination of surface node positions and feature curve positions, and (3) alignment of the mesh interior to the newly curved surface. The algorithm is implemented in our freely available cross-platform graphical software program meshCurve, which transforms existing linear meshes into high-order curved meshes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://gmsh.info/.

  2. Download meshCurve at https://sites.google.com/site/meshcurvesoftware/.

  3. https://www.hopr-project.org/index.php/Home.

References

  1. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138(2):251–285

    Article  MathSciNet  MATH  Google Scholar 

  2. Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, Evans TR (2001) Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, pp 67–76

  3. Carr JC, Beatson RK, McCallum BC, Fright WR, McLennan TJ, Mitchell TJ (2003) Smooth surface reconstruction from noisy range data. In: Proceedings of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia. ACM, pp 119–ff

  4. Geuzaine C, Remacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  5. Geuzaine C, Remacle JF (2016) Changelog. http://gmsh.info/CHANGELOG.txt

  6. Hamming R (2012) Numerical methods for scientists and engineers. Courier Corporation

  7. Hartmann R, Harlan M (2016) Curved grid generation and DG computation for the DLR-F11 high lift configuration. In: ECCOMAS Congress 2016 on Computational Methods in Applied Sciences and Engineering, vol 2. National Technical University of Athens (NTUA) Greece, pp 2843–2858

  8. Hindenlang F (2014) Mesh curving techniques for high order parallel simulations on unstructured meshes

  9. Hindenlang F, Bolemann T, Munz CD (2015) Mesh curving techniques for high order discontinuous Galerkin simulations. In: IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach. Springer, pp 133–152

  10. Ims J, Duan Z, Wang ZJ (2015) meshCurve: an automated low-order to high-order mesh generator. In: 22nd AIAA Computational Fluid Dynamics conference

  11. Jiao X, Bayyana NR (2008) Identification of C1 and C2 discontinuities for surface meshes in CAD. Comput Aided Des 40(2):160–175

    Article  Google Scholar 

  12. Jiao X, Wang D (2012) Reconstructing high-order surfaces for meshing. Eng Comput 28(4):361–373

    Article  Google Scholar 

  13. Karman SL, Erwin JT, Glasby RS, Stefanski D (2016) High-order mesh curving using WCN mesh optimization. In: 46th AIAA Fluid Dynamics Conference, p 3178

  14. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Polthier K, Sheffer A (eds) Eurographics Symposium on Geometry Processing

  15. Luke E, Collins E, Blades E (2012) A fast mesh deformation method using explicit interpolation. J Comput Phys 231(2):586–601

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo X, Shephard MS, Remacle JF (2001) The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC report 1

  17. Ray N, Delaney T, Einstein DR, Jiao X (2014) Surface remeshing with robust high-order reconstruction. Eng Comput 30(4):487–502

    Article  Google Scholar 

  18. Runge C (1901) Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik 46(224–243):20

    MATH  Google Scholar 

  19. Shampine LF, Allen RC, Pruess S (1997) Fundamentals of numerical computing, vol 1. Wiley, New York

    MATH  Google Scholar 

  20. Tampieri F (1992) Newell’s method for computing the plane equation of a polygon. In: Graphics Gems III (IBM Version). Elsevier, pp 231–232

  21. Trefethen LN, Bau III, D (1997) Numerical linear algebra, vol 50. Siam

  22. Wang Z (2007) High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Prog Aerosp Sci 43(1):1–41

    Article  MathSciNet  Google Scholar 

  23. Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H et al (2013) High-order CFD methods: current status and perspective. Int J Numer Meth Fluids 72(8):811–845

    Article  MathSciNet  Google Scholar 

  24. Wang Z, Li Y, Jia F, Laskowski G, Kopriva J, Paliath U, Bhaskaran R (2017) Towards industrial large eddy simulation using the FR/CPR method. Comput Fluids 156:579–589

    Article  MathSciNet  MATH  Google Scholar 

  25. Xie ZQ, Sevilla R, Hassan O, Morgan K (2013) The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51(3):361–374

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by NASA under Grant NNX12AK04A and also by the National Science Foundation Graduate Research Fellowship Program under Grant no. NSF0064451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Ims.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ims, J., Wang, Z.J. Automated low-order to high-order mesh conversion. Engineering with Computers 35, 323–335 (2019). https://doi.org/10.1007/s00366-018-0602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0602-x

Keywords

Navigation