Advertisement

Adaptive analysis of plates and laminates using natural neighbor Galerkin meshless method

  • Basant Kumar
  • Madhukar Somireddy
  • Amirtham Rajagopal
Original Article

Abstract

In this paper, natural neighbor Galerkin meshless method is employed for adaptive analysis of plates and laminates. The displacement field and strain field of plate are based on Reissner–Mindlin plate theory. The interpolation functions employed here were developed by Sibson and based on natural neighbor coordinates. An adaptive refinement strategy based on recovery energy norm which is in turn based on natural neighbors is employed for analysis of plates. The present adaptive procedure is applied to classical plate problems subjected to in-plane loads. In addition to that the laminated composite plates with cutouts subjected to transverse loads are investigated. Influence of the location of the cutout and the boundary conditions of the plate on the results have been studied. The results obtained with present adaptive analysis are accurate at lower computational effort when compare to that of no adaptivity. Further, the adaptive analysis provided accurate magnitude of maximum stresses and their locations in the laminate plates with and without cutout subjected to transverse loads. Additionally, failure prone areas in the geometry of the plates subjected to loads are revealed with the adaptive analysis.

Keywords

Meshless methods Natural neighbors Adaptive strategy Laminates Plate theory 

References

  1. 1.
    Belytschko T, Lu YY, Gu Y (1994) Element free Galerkin method. Int J Numer Methods Eng 37:229–256.  https://doi.org/10.1002/nme.1620370205 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin approach in computational mechanics. Comput Mech 22(2):117–127.  https://doi.org/10.1007/s004660050346 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and applications to non-spherical stars. Mon Not R Astron Soc 181:375–389.  https://doi.org/10.1093/mnras/181.3.375 CrossRefMATHGoogle Scholar
  4. 4.
    Bathe KJ, De S (2001) Towards an efficient meshless computational technique: the method of finite spheres. Eng Comput 18:170–192.  https://doi.org/10.1108/02644400110365860 CrossRefMATHGoogle Scholar
  5. 5.
    Sambridge MS, Braun J, McQueen H (1995) Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophys J Int 122(1):837–857.  https://doi.org/10.1111/j.1365-246X.1995.tb06841.x CrossRefGoogle Scholar
  6. 6.
    Sibson R (1980) A vector identity for the Dirichlet tessellation. Math Proc Camb Philos Soc 87:151–155.  https://doi.org/10.1017/S0305004100056589 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887. http://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-RGoogle Scholar
  8. 8.
    Reddy JN (2004) Mechanics of laminated composite plates and shells theory and analysis, 2nd edn. CRC Press, Boca RatonMATHGoogle Scholar
  9. 9.
    Chate A, Makinen K (1994) Plane finite element for static and free vibration analysis of sandwich plates. Mech Compos Mater 30(2):168–176.  https://doi.org/10.1007/BF00635849 CrossRefGoogle Scholar
  10. 10.
    Lee LJ, Fan YJ (1996) Bending and vibration analysis of composite sandwich plates. Comput Struct 60(1):103–112.  https://doi.org/10.1016/0045-7949(95)00357-6 CrossRefMATHGoogle Scholar
  11. 11.
    Reddy JN, Cho WC (1981) Non-linear bending of thick rectangular, laminated composite plates. Int J Non Linear Mech 16(3&4), 291–301. https://doi.org/10.1016/0020-7462(81)90042-1Google Scholar
  12. 12.
    Wung PM, Reddy JN (1991) A transverse deformation theory of laminated composite plates. Comput Struct 41(4):821–833.  https://doi.org/10.1016/0045-7949(91)90191-N CrossRefMATHGoogle Scholar
  13. 13.
    Reddy JN (1984) A simple higher order theory for laminated composite plates. J Appl Mech T ASME 51:745–752.  https://doi.org/10.1115/1.3167719 CrossRefMATHGoogle Scholar
  14. 14.
    Reddy JN, Phan ND (1985) Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory. J Sound Vib 98(2):157–170.  https://doi.org/10.1016/0022-460X(85)90383-9 CrossRefMATHGoogle Scholar
  15. 15.
    Lim SP, Lee KH, Chow ST, Senthilnathan NR (1988) Linear and non-linear bending of shear deformable plates. Comput Struct 30(4):945–952.  https://doi.org/10.1016/0045-7949(88)90132-0 CrossRefMATHGoogle Scholar
  16. 16.
    Madhukar S, Singha MK (2013) Geometrically nonlinear finite element analysis of sandwich plates using normal deformation theory. Compos Struct 97:84–90.  https://doi.org/10.1016/j.compstruct.2012.10.034 CrossRefGoogle Scholar
  17. 17.
    Nayak AK, Moy SSJ, Shenoi RA (2002) Free vibration analysis of composite sandwich based on Reddy’s higher order theory. Compos Part B Eng 33:505–519.  https://doi.org/10.1016/S1359-8368(02)00035-5 CrossRefGoogle Scholar
  18. 18.
    Pandya BN, Kant T (1988) A refined higher order generally orthotropic C 0 plate bending element. Comput Struct 28(2):119–133.  https://doi.org/10.1016/0045-7949(88)90031-4 CrossRefMATHGoogle Scholar
  19. 19.
    Dinis LMJS., Jorge RMN, Belinha J (2007) Analysis of 3D solids using the natural neighbor radial point interpolation method. Comput Methods Appl Mech Eng 196:2009–2028.  https://doi.org/10.1016/j.cma.2006.11.002 CrossRefMATHGoogle Scholar
  20. 20.
    Dinis LMJS., Jorge RMN, Belinha J (2008) Analysis of plates and laminates using the natural neighbor radial point interpolation method. Eng Anal Bound Elem 32:267–279.  https://doi.org/10.1016/j.enganabound.2007.08.006 CrossRefMATHGoogle Scholar
  21. 21.
    Dinis LMJS., Jorge RMN, Belinha J (2010) A 3D shell-like approach using a natural neighbor meshless method: isotropic and orthotropic thin structures. Compos Struct 92:1132–1142.  https://doi.org/10.1016/j.compstruct.2009.10.014 CrossRefGoogle Scholar
  22. 22.
    Dinis LMJS., Jorge RMN, Belinha J (2011) A natural neighbor meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures. Thin Wall Struct 49:185–196.  https://doi.org/10.1016/j.tws.2010.09.023 CrossRefGoogle Scholar
  23. 23.
    Leung AYT (1991) An unconstrained third order plate theory. Comput Struct 40(4):871–875.  https://doi.org/10.1016/S0045-7949(03)00290-6 CrossRefMATHGoogle Scholar
  24. 24.
    Dinis LMJS., Jorge RMN, Belinha J (2010) An unconstrained third order plate theory applied to functionally graded plates using a meshless method. Mech Adv Mater Struct 17:108–133.  https://doi.org/10.1080/15376490903249925 CrossRefGoogle Scholar
  25. 25.
    Li SL, Liu KY, Long SY, Li GY (2011) The natural neighbor Petrov–Galerkin method for thick plates. Eng Anal Bound Elem 35:616–622.  https://doi.org/10.1016/j.enganabound.2010.11.003 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1. BH Publications, Clarens, Oxford, EnglandGoogle Scholar
  27. 27.
    Babuska I, Rheinboldt WC (1978) A posteriori error estimates for the finite element method. Int J Numer Methods Eng 12:1597–1615.  https://doi.org/10.1002/nme.1620121010 CrossRefMATHGoogle Scholar
  28. 28.
    Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357.  https://doi.org/10.1002/nme.1620240206 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mohite PH, Upadhyay CS (2002) Local quality of smoothening based a posteriori error estimator for laminated plates under transverse loading. Comput Struct 80:1447–1488.  https://doi.org/10.1016/S0045-7949(02)00099-8 CrossRefGoogle Scholar
  30. 30.
    Mohite PM, Upadhyay CS (2003) Focused adaptivity for laminated plates. Comput Struct 81:287–298.  https://doi.org/10.1016/S0045-7949(02)00448-0 CrossRefGoogle Scholar
  31. 31.
    Mohite PM, Upadhyay CS (2006) Accurate computation of critical local quantities in composite laminated plates under transverse loading. Comput Struct 84:657–675.  https://doi.org/10.1016/j.compstruc.2005.11.004 CrossRefGoogle Scholar
  32. 32.
    Mohite PM, Upadhyay CS (2007) Region by region modeling of laminated composite plates. Comput Struct 85:1808–1827.  https://doi.org/10.1016/j.compstruc.2007.04.005 CrossRefGoogle Scholar
  33. 33.
    Tabarraei A, Sukumar N (2005) Adaptive computation on conforming quadtree meshes. Finite Elem Anal Des 41:686–702.  https://doi.org/10.1016/j.finel.2004.08.002 CrossRefGoogle Scholar
  34. 34.
    Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modeling using an adaptive meshless method. Comput Struct 118:39–52.  https://doi.org/10.1016/j.compstruc.2012.04.001 CrossRefGoogle Scholar
  35. 35.
    Cai Y, Zhu H (2004) A meshless local natural neighbor interpolation method for stress analysis of solids. Eng Anal Bound Elem 28:607–613.  https://doi.org/10.1016/j.enganabound.2003.10.001 CrossRefMATHGoogle Scholar
  36. 36.
    Yvonnet J, Coffignal G, Ryckelynck D, Lorong P, Chinesta F (2006) A simple error indicator for meshfree methods based on natural neighbors. Comput Struct 84:1301–1312.  https://doi.org/10.1016/j.compstruc.2006.04.002 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Madhukar S, Rajagopal A (2014) Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates. Compos Struct 111:138–146.  https://doi.org/10.1016/j.compstruct.2013.12.023 CrossRefGoogle Scholar
  38. 38.
    Mohite PM, Upadhyay CS (2015) Adaptive finite element based shape optimization in laminated composite plates. Comput Struct 153:19–35.  https://doi.org/10.1016/j.compstruc.2015.02.020 CrossRefGoogle Scholar
  39. 39.
    Stein E, Rüter M, Ohnimus S (2004) Adaptive finite element analysis and modelling of solids and structures. Findings, problems and trends. Int J Numer Methods Eng 60(1):103–38.  https://doi.org/10.1002/nme.956 MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Stein E, Rüter M, Ohnimus S (2007) Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity. Comput Methods Appl Mech Eng 196(37):3598–3613.  https://doi.org/10.1016/j.cma.2006.10.032 MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Rüter M, Stein E (2006) Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput Methods Appl Mech Eng 15(4):251–278.  https://doi.org/10.1016/j.cma.2004.05.032 195) .MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Roylance D (2001) Introduction to fracture mechanics. Massachusetts Institute of Technology, Cambridge, pp 1–2Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Systems LaboratoryDRDOHyderabadIndia
  2. 2.Department of Mechanical EngineeringYork UniversityTorontoCanada
  3. 3.Department of Civil EngineeringIIT HyderabadHyderabadIndia

Personalised recommendations