Solving viscoelastic problems with cyclic symmetry via a temporally adaptive EFG-SB partitioning algorithm

Original Article
  • 18 Downloads

Abstract

Based upon a combination of a temporally-piecewise adaptive algorithm with an Element-Free Galerkin Scaled Boundary Method (EFG-SBM), a partitioning algorithm is presented for the two-dimensional viscoelastic analysis of cyclically symmetric structures. By expanding variables at a discretized time interval, the variations of variables can be described more precisely, and a space–time domain-coupled problem can be converted into a series of recurrent boundary value problems which are solved by an EFG-SBM-based partitioning algorithm via an adaptive computing process. Numerical examples are given to verify the proposed algorithm in terms of computing accuracy and efficiency.

Keywords

Viscoelasticity Cyclic symmetry Element-free Galerkin-scaled boundary method Temporally piecewise adaptive algorithm 

Notes

Acknowledgements

The research leading to this paper is funded by NSF [11572068], NKBRSF [2015CB057804], Natural Science Funding of Liaoning Province [201602115].

References

  1. 1.
    Christensen RM (1982) Theory of viscoelasticity: an introduction. Academic Press, CambridgeGoogle Scholar
  2. 2.
    Ahmadi E, Barikloo H, Kashfi M (2016) Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard to its different layers. Comput Electron Agr 121:1–11CrossRefGoogle Scholar
  3. 3.
    Ashrafia H, Shariyata M, Khalilia SMR, Asemib K (2013) A boundary element formulation for the heterogeneous functionally graded viscoelastic structures. Appl Math Comput 225:246 – 62MathSciNetGoogle Scholar
  4. 4.
    Han Z, Yang HT, Liu L (2006) Solving viscoelastic problems with cyclic symmetry via a precise algorithm and EFGM. Acta Mech Sinica 22:170–176CrossRefMATHGoogle Scholar
  5. 5.
    Guo XF, Yang HT (2016) A combination of EFG-SBM and a temporally-piecewise adaptive algorithm to solve viscoelastic problems. Eng Anal Bound Elem 67:43–52MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu QW, Prozzi JA (2015) A time-domain finite element method for dynamic viscoelastic solution of layered-half-space responses under loading pulses. Comput Struct 160:20–39CrossRefGoogle Scholar
  7. 7.
    Kalyania VK, Pallavikab SK, Chakrabortyb (2014) Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media. Appl Math Comput 237:133 – 45MathSciNetGoogle Scholar
  8. 8.
    Wolf JP, Song Ch (1996) Consistent infinitesimal finite element cell method: three dimensional vector wave equation. Int J Numer Methods Eng 39:2189–2208CrossRefMATHGoogle Scholar
  9. 9.
    Wolf JP, Song Ch (1996) Finite-element modelling of unbounded media. Wiley, ChichesterMATHGoogle Scholar
  10. 10.
    Wolf JP, Song Ch (2000) The scaled boundary finite-element method—a primer: derivation. Comput Struct 78:191–210CrossRefGoogle Scholar
  11. 11.
    Wolf JP, Song Ch (2001) The scaled boundary finite-element method—a fundamental solution-less boundary-element method. Comput Methods Appl Mech Eng 190:5551–5568CrossRefMATHGoogle Scholar
  12. 12.
    Deeks AJ, Wolf JP (2002) A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech 28:489–504MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Deeks AJ, Augarde CE (2005) A meshless local Petrov-Galerkin scaled boundary method. Comput Mech 36:159–170MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lin G, Lu S, Liu J (2015) Duality system-based derivation of the modified scaled boundary finite element method in the time domain and its application to anisotropic soil. Appl Math Model 40:5230–5255MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ooi ET, Yang ZJ (2010) Modelling crack propagation reinforced concrete using a hybrid finite element-scaled boundary finite element method. Eng Fract Mech 78:252 – 73CrossRefGoogle Scholar
  16. 16.
    Ooi ET, Yang ZJ (2010) A hybrid finite element-scaled boundary finite element method for crack propagation modelling. Comput Method Appl Mech Eng 199:1178–1192MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ooi ET, Yang ZJ (2011) Modelling dynamic crack propagation using the scaled boundary finite element method. Int J Numer Method Eng 88:329–349MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yang ZJ, Deeks AJ, Hao H (2007) Transient dynamic fracture analysis using scaled boundary finite element method: a frequency domain approach. Eng Fract Mech 74:669 – 87CrossRefGoogle Scholar
  19. 19.
    Bazyar MH, Talebi A (2015) Scaled boundary finite-element method for solving nonhomogeneous anisotropic heat conduction problems. Appl Math Model 39:7583–7599MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hell S, Becker W (2015) The scaled boundary finite element method for the analysis of 3D crack interaction. J Comput Sci 9:76–81CrossRefGoogle Scholar
  21. 21.
    Zhong WX, Qiu CH (1983) Analysis of symmetric or partially symmetric structures. Comput Methods Appl Mech Eng 38:1–18CrossRefMATHGoogle Scholar
  22. 22.
    Wu GF, Yang HT (1994) The use of cyclic symmetry in two-dimensional elastic stress analysis by BEM. Int J Solids Struct 31:279–290CrossRefMATHGoogle Scholar
  23. 23.
    Guo XF, He YQ, Yang HT (2015) An EFG-SBM based partitioning algorithm for two-dimensional elastic analysis of cyclically symmetrical structures. Eng Computation 32(2):452–472CrossRefGoogle Scholar
  24. 24.
    Yang HT, Guo XF, He YQ (2015) An EFG-SBM based partitioning algorithm for heat transfer analysis of cyclically symmetrical structures. Finite Elem Anal Des 93:42–49MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chongshuai Wang Y, He H Yang (2016) A piecewise partitioning scaled boundary finite element algorithm to solve viscoelastic problems with cyclic symmetry. Eng Anal Bound Elem 73:120–125MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zienkiewicz OC, Morgan K (1983) Finite element and approximation. Wiley, New YorkMATHGoogle Scholar
  27. 27.
    Shames IH, Cozzarelli FA (1992) Elasitc and inelastic stress analysis. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  28. 28.
    Cai E (1989) The foundation of viscoelastic mechanics. Beihang University Press, BeijingGoogle Scholar
  29. 29.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Belytschko T, Krongauz Y, Organ D (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefMATHGoogle Scholar
  31. 31.
    Lin HT, Li CY, Zhang NY (1994) Linear algebra. Tian Jin University Press, Tian JinGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Civil and safety EngineeringDalian Jiaotong UniversityDalianPeople’s Republic of China
  2. 2.Dept. of Engineering Mechanics, State Key Lab of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations