Skip to main content
Log in

The Projective Ensemble and Distribution of Points in Odd-Dimensional Spheres

  • Published:
Constructive Approximation Aims and scope

Abstract

We consider a determinantal point process on the complex projective space that reduces to the so-called spherical ensemble for complex dimension 1 under identification of the 2-sphere with the Riemann sphere. Through this determinantal point process, we propose a new point processs in odd-dimensional spheres that produces fairly well-distributed points, in the sense that the expected value of the Riesz 2-energy for these collections of points is smaller than all previously known bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alishahi, K., Zamani, M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20, 23–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complexity 37, 76–109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltrán, C., Corral, N., Criado del Rey, J.G.: Discrete and continuous green energy on compact manifolds. arXiv:1702.00864 [math.DG]

  4. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Minimal Discrete Energy on the Sphere and Other Manifolds. Springer, Berlin (to appear)

  7. Brauchart, J.S.: About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case. Integr. Transforms Spec. Funct. 17(5), 321–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complexity 31(3), 293–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brauchart, J.S., Hardin, D.P., Saff, E.B.: The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N. Bull. Lond. Math. Soc. 41(4), 621–633 (2009). https://doi.org/10.1112/blms/bdp034

    Article  MathSciNet  MATH  Google Scholar 

  10. Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. In: Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, pp. 31–61 (2012). https://doi.org/10.1090/conm/578/11483

  11. Doohovskoy, A.P., Landkof, N.S.: Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2011)

    Google Scholar 

  12. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 8th edn. Elsevier /Academic Press, Amsterdam (2015) (Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition)

  13. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)

    MATH  Google Scholar 

  14. Krishnapur, M.: From random matrices to random analytic functions. Ann. Probab. 37(1), 314–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Scardicchio, A., Zachary, C.E., Torquato, S.: Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E 79, 041108 (2009). https://doi.org/10.1103/PhysRevE.79.041108

    Article  MathSciNet  Google Scholar 

  20. Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5–335), 107–160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Joaquim Ortega-Cerdá and an anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujué Etayo.

Additional information

Communicated by Doug Hardin.

This research has been partially supported by Ministerio de Economía y Competitividad, Gobierno de España, through Grants MTM2017-83816-P, MTM2014-57590-P, and MTM2015-68805-REDT, and by the Banco de Santander and Universidad de Cantabria Grant 21.SI01.64658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, C., Etayo, U. The Projective Ensemble and Distribution of Points in Odd-Dimensional Spheres. Constr Approx 48, 163–182 (2018). https://doi.org/10.1007/s00365-018-9426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9426-6

Keywords

Mathematics Subject Classification

Navigation