Behavior of the Roots of the Taylor Polynomials of Riemann’s \(\xi \) Function with Growing Degree



We establish a uniform approximation result for the Taylor polynomials of Riemann’s \(\xi \) function valid in the entire complex plane as the degree grows. In particular, we identify a domain growing with the degree of the polynomials on which they converge to Riemann’s \(\xi \) function. Using this approximation, we obtain an estimate of the number of “spurious zeros” of the Taylor polynomial that lie outside of the critical strip, which leads to a Riemann–von Mangoldt type formula for the number of zeros of the Taylor polynomials within the critical strip. Super-exponential convergence of Hurwitz zeros of the Taylor polynomials to bounded zeros of the \(\xi \) function are also established. Finally, we explain how our approximation techniques can be extended to a collection of analytic L-functions.


Riemann zeta Taylor polynomials Szegő curves Hurwitz zeros 

Mathematics Subject Classification

30E10 11M26 



The authors thank Nigel Pitt for useful conversations. R. Jenkins was supported by the National Science Foundation under grant DMS-1418772. K. D. T-R McLaughlin was supported by the National Science Foundation under grant DMS-1401268.


  1. 1.
    Ahlfors, L.: Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable. McGraw-Hill Book Company, Inc., New York (1953)MATHGoogle Scholar
  2. 2.
    Andrievskii, V., Carpenter, A., Varga, R.: Angular distribution of zeros of the partial sums of \(e^z\) via the solution of inverse logarithmic potential problem. Comput. Methods Funct. Theory 6(2), 447–458 (2006). MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bleher, P., Mallison Jr., R.: Zeros of sections of exponential sums. Int. Math. Res. Notices 49, 38937 (2006). MathSciNetMATHGoogle Scholar
  4. 4.
    Borwein, P., Fee, G., Ferguson, R., van der Waall, A.: Zeros of partial sums of the Riemann zeta function. Exp. Math. 16(1), 21–39 (2007).
  5. 5.
    Buckholtz, J.: A characterization of the exponential series. Am. Math. Mon. 73, 121–123 (1966). (4, part II)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Carpenter, A., Varga, R., Waldvogel, J.: Asymptotics for the zeros of the partial sums of \(e^z\). I. In: Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), vol. 21, pp. 99–120 (1991).
  7. 7.
    Conway, J.: Functions of One Complex Variable, Graduate Texts in Mathematics, 2nd edn. Springer, New York (1978)CrossRefGoogle Scholar
  8. 8.
    NIST Digital Library of Mathematical Functions., Release 1.0.10 of 2015-08-07.
  9. 9.
    Edwards, H.: Riemann’s Zeta Function. Pure and Applied Mathematics, vol. 58. Academic Press (A subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1974)Google Scholar
  10. 10.
    Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc (3) 85(3), 565–633 (2002). MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gonek, S., Ledoan, A.: Zeros of partial sums of the Riemann zeta-function. Int. Math. Res. Notices IMRN 10, 1775–1791 (2010)MathSciNetMATHGoogle Scholar
  12. 12.
    Kriecherbauer, T., Kuijlaars, A., McLaughlin, K., Miller, P.: Locating the zeros of partial sums of \(e^z\) with Riemann–Hilbert methods. In: Integrable Systems and Random Matrices, Contemporary Mathematics, 458, pp. 183–195. American Mathematical Society, Providence, RI (2008).
  13. 13.
    Newman, D., Rivlin, T.: The zeros of the partial sums of the exponential function. J. Approximation Theory 5, 405–412 . Collection of articles dedicated to J. L. Walsh on his 75th birthday, IV (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970) (1972)Google Scholar
  14. 14.
    Newman, D., Rivlin, T.: Correction to: “The zeros of the partial sums of the exponential function” (J. Approximation Theory 5 (1972), 405–412). J. Approximation Theory 16(4), 299–300 (1976)Google Scholar
  15. 15.
    Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss., Berlin (1859).
  16. 16.
    Saff, E., Varga, R.: On the sharpness of theorems concerning zero-free regions for certain sequences of polynomials. Numer. Math. 26(4), 345–354 (1976). MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Saff, E., Varga, R.: Zero-free parabolic regions for sequences of polynomials. SIAM J. Math. Anal. 7(3), 344–357 (1976). MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Szegő, G.: Über eine Eigenschaft der Exponentialreihe. Sitzungsber. Berl. Math. Ges 23, 50–64 (1924)MATHGoogle Scholar
  19. 19.
    The LMFDB collaboration: the L-functions and modular forms database. (2013). Accessed 16 Sept 2016
  20. 20.
    Titchmarsh, E.: The Theory of the Riemann Zeta-Function, 2nd edn. The Clarendon Press, Oxford University Press, New York. Edited and with a preface by D. R. Heath-Brown (1986)Google Scholar
  21. 21.
    Varga, R., Carpenter, A.: Zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\). I. Numer. Algorithms 25(1–4), 363–375 (2000) Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999)
  22. 22.
    Varga, R., Carpenter, A.: Zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\). II. Numer. Math. 90(2), 371–400 (2001). MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Varga, R., Carpenter, A.: Zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\). III. Appl. Numer. Math. 60(4), 298–313 (2010). MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Vargas, A.: Limit curves for zeros of sections of exponential integrals. Constr. Approx. 40(2), 219–239 (2014)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wolfram Research, Inc.: Mathematica.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations