Robust and efficient estimating equations for longitudinal data partial linear models and its applications

Abstract

Composite quantile regression (CQR) is a good alternative of the mean regression, because of its robustness and efficiency. In longitudinal data analysis, correlation structure plays an important role in improving efficiency. However, how to specify the correlation matrix in CQR with longitudinal data is challenging. We propose a new approach that uses copula to account for intra-subject dependence, and by using the copula based covariance matrix, robust and efficient CQR estimating equations are constructed for the partial linear models with longitudinal data. As a specific application, a copula based CQR empirical likelihood is proposed. Furthermore, it can also be used to develop a penalized empirical likelihood for variable selection. Our proposed new methods are flexible, and can provide robust and efficient estimation. The properties of the proposed methods are established theoretically, and assessed numerically through simulation studies.

This is a preview of subscription content, log in to check access.

References

  1. Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur: Math Econ 44:182–198

    MathSciNet  MATH  Google Scholar 

  2. Bai Y, Zhu Z, Fung W (2008) Partial linear models for longitudinal data based on quadratic inference functions. Scand J Stat 35:104–118

    MathSciNet  MATH  Article  Google Scholar 

  3. Bai Y, Kang J, Song P (2014) Efficient pairwise composite likelihood estimation for spatial clustered data. Biometrics 70:661–670

    MathSciNet  MATH  Article  Google Scholar 

  4. Brown B, Wang Y (2005) Standard errors and covariance matrices for smoothed rank estimators. Biometrika 92:149–158

    MathSciNet  MATH  Article  Google Scholar 

  5. Chen K, Jin Z (2006) Partial linear regression models for clustered data. J Am Stat Assoc 101:195–204

    MathSciNet  MATH  Article  Google Scholar 

  6. Chen X, Chen X, Liu Y (2019) A note on quantile feature screening via distance correlation. Stat Pap 60:1741–1762

    MathSciNet  MATH  Article  Google Scholar 

  7. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    MathSciNet  MATH  Article  Google Scholar 

  8. Fan Y, Qin G, Zhu Z (2012) Variable selection in robust regression models for longitudinal data. J Multivar Anal 109:156–167

    MathSciNet  MATH  Article  Google Scholar 

  9. Fan Y, Härdle W, Wang W, Zhu L (2018) Single-index-based CoVaR with very high-dimensional covariates. J Bus Econ Stat 36:212–226

    MathSciNet  Article  Google Scholar 

  10. Fu L, Wang Y (2016) Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data. J Multivar Anal 143:492–502

    MathSciNet  MATH  Article  Google Scholar 

  11. Haff I, Aas K, Frigessi A (2010) On the simplified pair-copula construction simply useful or too simplistic? J Multivar Anal 101:1296–1310

    MathSciNet  MATH  Article  Google Scholar 

  12. Hall P, Sheather S (1988) On the distribution of a studentized quantile. J R Stat Soc Ser B 50:381–391

    MathSciNet  MATH  Google Scholar 

  13. He X, Fung W, Zhu Z (2005) Robust estimation in generalized partial linear models for clustered data. J Am Stat Assoc 100:1176–1184

    MathSciNet  MATH  Article  Google Scholar 

  14. Heckman N (1986) Spline smoothing in partly linear models. J R Stat Soc Ser B 48:244–248

    MathSciNet  MATH  Google Scholar 

  15. Hendricks W, Koenker R (1992) Hierarchical spline models for conditional quantiles and the demand for electricity. J Am Stat Assoc 87:58–68

    Article  Google Scholar 

  16. Jiang X, Jiang J, Song X (2012) Oracle model selection for nonlinear models based on weighted composite quantile regression. Stat Sin 22:1479–1506

    MathSciNet  MATH  Google Scholar 

  17. Jiang R, Qian W, Zhou Z (2016) Single-index composite quantile regression with heteroscedasticity and general error distributions. Stat Pap 57:185–203

    MathSciNet  MATH  Article  Google Scholar 

  18. Jung S (1996) Quasi-likelihood for median regression models. J Am Stat Assoc 91:251–257

    MathSciNet  MATH  Article  Google Scholar 

  19. Kai B, Li R, Zou H (2010) Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. J R Stat Soc Ser B 72:49–69

    MathSciNet  MATH  Article  Google Scholar 

  20. Kai B, Li R, Zou H (2011) New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann Stat 39:399–411

    MathSciNet  MATH  Article  Google Scholar 

  21. Lai P, Wang Q, Lian H (2012) Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. J Multivar Anal 105:422–432

    MathSciNet  MATH  Article  Google Scholar 

  22. Li G, Lian H, Feng S, Zhu L (2013) Automatic variable selection for longitudinal generalized linear models. Comput Stat Data Anal 61:174–186

    MathSciNet  MATH  Article  Google Scholar 

  23. Lian H, Liang H, Wang L (2014) Generalized additive partial linear models for clustered data with diverging number of covariates using GEE. Stat Sin 23:173–196

    MathSciNet  MATH  Google Scholar 

  24. Liang K, Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    MathSciNet  MATH  Article  Google Scholar 

  25. Lv J, Yang H, Guo C (2015) An efficient and robust variable selection method for longitudinal generalized linear models. Comput Stat Data Anal 82:74–88

    MathSciNet  MATH  Article  Google Scholar 

  26. Owen A (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 74:237–249

    MathSciNet  MATH  Article  Google Scholar 

  27. Qin G, Zhu Z (2007) Robust estimation in generalized semiparametric mixed models for longitudinal data. J Multivar Anal 98:1658–1683

    MathSciNet  MATH  Article  Google Scholar 

  28. Qin G, Zhu Z, Fung W (2009) Robust estimation of covariance parameters in partial linear model for longitudinal data. J Stat Plan Inference 139:558–570

    MathSciNet  MATH  Article  Google Scholar 

  29. Qin G, Bai Y, Zhu Z (2012) Robust empirical likelihood inference for generalized partial linear models with longitudinal data. J Multivar Anal 105:32–44

    MathSciNet  MATH  Article  Google Scholar 

  30. Schumaker L (1981) Spline functions: basic theory. Wiley, New York

    Google Scholar 

  31. Smith M, Min A, Almeida C, Czado C (2010) Modeling longitudinal data using a pair-copula decomposition of serial dependence. J Am Stat Assoc 105:1467–1479

    MathSciNet  MATH  Article  Google Scholar 

  32. Song P (2000) Multivariate dispersion models generated from Gaussian copula. Scand J Stat 27:305–320

    MathSciNet  MATH  Article  Google Scholar 

  33. Sun J, Frees E, Rosenberg M (2008) Heavy-tailed longitudinal data modeling using copulas. Insur: Math Econ 42:817–830

    MATH  Google Scholar 

  34. Sun J, Gai Y, Lin L (2013) Weighted local linear composite quantile estimation for the case of general error distributions. J Stat Plan Inference 143:1049–1063

    MathSciNet  MATH  Article  Google Scholar 

  35. Tang Q, Cheng L (2012) Component wise B-spline estimation for varying coefficient models with longitudinal data. Stat Pap 53:629–652

    MATH  Article  Google Scholar 

  36. Tian R, Xue L, Hu Y (2015) Smooth-threshold GEE variable selection for varying coefficient partially linear models with longitudinal data. J Korean Stat Soc 44:419–431

    MathSciNet  MATH  Article  Google Scholar 

  37. Wang K, Lin L (2019) Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data. Stat Pap 60:1649–1676

    MathSciNet  MATH  Article  Google Scholar 

  38. Wang K, Sun X (2017) Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data. Stat Pap. https://doi.org/10.1007/s00362-017-0970-0

    Article  Google Scholar 

  39. Wang H, Zhu Z, Zhou J (2009) Quantile regression in partially linear varying coefficient models. Ann Stat 37:3841–3866

    MathSciNet  MATH  Article  Google Scholar 

  40. Wang L, Zhou J, Qu A (2012) Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics 68:353–360

    MathSciNet  MATH  Article  Google Scholar 

  41. Wang H, Feng X, Dong C (2019) Copula-based quantile regression for longitudinal data. Stat Sin 29:245–264

    MathSciNet  MATH  Google Scholar 

  42. Xue L, Zhu L (2007) Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika 94:921–937

    MathSciNet  MATH  Article  Google Scholar 

  43. Zhang J, Zhou Y, Lin B, Yu Y (2017) Estimation and hypothesis test on partial linear models with additive distortion measurement errors. Comput Stat Data Anal 112:114–128

    MathSciNet  MATH  Article  Google Scholar 

  44. Zhao P, Li G (2013) Modified SEE variable selection for varying coefficient instrumental variable models. Stat Methodol 12:60–70

    MathSciNet  MATH  Article  Google Scholar 

  45. Zhao W, Lian H, Song X (2017) Composite quantile regression for correlated data. Comput Stat Data Anal 109:15–33

    MathSciNet  MATH  Article  Google Scholar 

  46. Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36:1108–1126

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kangning Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by NNSF project (11901356), wealth management project (2019ZBKY047) of Shandong Technology and Business University.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 255 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Hao, M. & Sun, X. Robust and efficient estimating equations for longitudinal data partial linear models and its applications. Stat Papers (2020). https://doi.org/10.1007/s00362-020-01181-5

Download citation

Keywords

  • Robustness
  • Efficiency
  • Longitudinal data
  • Empirical likelihood
  • Variable selection