Advertisement

Cramér’s type results for some bootstrapped U-statistics

  • Sergio Alvarez-Andrade
  • Salim Bouzebda
Regular Article
  • 49 Downloads

Abstract

In the present paper, we are mainly interested in Cramér-type results for the weighted bootstrap of the U-statistics. The method of proof is based on the Hoeffding decomposition according to the bootstrapped Cramér transform together with the contraction technique. Finally, we investigate the U-statistics indexed by a one dimensional symmetric random walk.

Keywords

U-statistics Wild Bootstrap Large deviations 

Mathematics Subject Classification

60F10 60G50 62E20 

Notes

Acknowledgements

The authors are grateful to the Editor, an Associate editor, and the referees for thorough proofreading and numerous comments which led to a considerable improvement of the presentation of this paper.

References

  1. Abujarad M (2006) Almost sure behavior for increments of \(U\) -statistics. Dissertation, zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu GöttingenGoogle Scholar
  2. Barbe P, Bertail P (1995) The weighted bootstrap. Lecture Notes in Statistics, vol 98. Springer, New YorkCrossRefzbMATHGoogle Scholar
  3. Bentkus V, Jing BY, Zhou W (2009) On normal approximations to \(U\)-statistics. Ann. Probab. 37(6):2174–2199MathSciNetCrossRefzbMATHGoogle Scholar
  4. Beran R (2003) The impact of the bootstrap on statistical algorithms and theory. Stat Sci 18(2):175–184 Silver anniversary of the bootstrapMathSciNetCrossRefzbMATHGoogle Scholar
  5. Bickel PJ, Freedman DA (1981) Some asymptotic theory for the bootstrap. Ann Stat 9(6):1196–1217MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bickel PJ, Götze F, van Zwet WR (1997) Resampling fewer than \(n\) observations: gains, losses, and remedies for losses. Statist. Sinica, 7(1), 1–31. Empirical Bayes, sequential analysis and related topics in statistics and probability (New Brunswick, NJ, 1995)Google Scholar
  7. Borovskikh YuV, Robinson J (2008) Large deviations of bootstrapped \(U\)-statistics. J Multivar Anal 99(8):1793–1806MathSciNetCrossRefzbMATHGoogle Scholar
  8. Borovskikh YuV, Weber NC (2003) Large Deviations of \(U\)-Statistics. I. Lith Math J 43(1):11–33MathSciNetCrossRefzbMATHGoogle Scholar
  9. Borovskikh YuV, Weber NC (2003) Large deviations of \(U\)-statistics. II. Lith Math J 43(3):241–261MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bouzebda S (2012) On the strong approximation of bootstrapped empirical copula processes with applications. Math Methods Stat 21(3):153–188MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bouzebda S, Cherfi M (2012) General bootstrap for dual \(\phi \)-divergence estimates. J Probab Stat 2012(834107):33.  https://doi.org/10.1155/2012/834107 MathSciNetzbMATHGoogle Scholar
  12. Chang J, Shao QM, Zhou WX (2016) Cramér type moderate deviation for studentized two-sample \(U\)-statistics with applications. Ann Stat 44(5):1931–1956CrossRefzbMATHGoogle Scholar
  13. Chen X (2010) Random walk intersections. Large deviations and related topics. Mathematical Surveys and Monographs, vol. 157. American Mathematical Society, ProvidenceGoogle Scholar
  14. Cheng G, Huang JZ (2010) Bootstrap consistency for general semiparametric \(M\)-estimation. Ann Stat 38(5):2884–2915MathSciNetCrossRefzbMATHGoogle Scholar
  15. Chiang C-T, James LF, Wang M-C (2005) Random weighted bootstrap method for recurrent events with informative censoring. Lifetime Data Anal 11(4):489–509MathSciNetCrossRefzbMATHGoogle Scholar
  16. Chiang C-T, Wang S-H, Hung H (2009) Random weighting and edgeworth expansion for the nonparametric time-dependent AUC estimator. Stat Sin 19(3):969–979MathSciNetzbMATHGoogle Scholar
  17. Cramér H (1928) On the composition of elementary errors. Scand Actuar J 1928(1):13–74CrossRefzbMATHGoogle Scholar
  18. Dasgupta R (2010) Bootstrap of deviation probabilities with applications. J Multivar Anal 101(9):2137–2148MathSciNetCrossRefzbMATHGoogle Scholar
  19. Deheuvels P, Devroye L, Lynch J (1986) Exact convergence rate in the limit theorems of Erdos-Rényi and Shepp. Ann Probab 14(1):209–223MathSciNetCrossRefzbMATHGoogle Scholar
  20. De La Peña VH, Lai TL, Shao QM (2009) Self-normalized processes, limit theory and statistical applications. Springer, BerlinCrossRefzbMATHGoogle Scholar
  21. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26MathSciNetCrossRefzbMATHGoogle Scholar
  22. Eichelsbacher P, Löwe M (1995) A large deviation principle for m-variate von Mises-statistics and U-statistics. J Theor Probab 8(4):807–824MathSciNetCrossRefzbMATHGoogle Scholar
  23. Ermakov MS (2013) The large deviation principle for the probabilities of moderate deviations of empirical bootstrap measures. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 412(Veroyatnost’ i Statistika. 19), 138–180, 275–276Google Scholar
  24. Franke B, Pène F, Wendler M (2017a) Stable limit theorem for \(U\)-statistic processes indexed by a random walk. Electron Commun Probab 22(9):1–12MathSciNetzbMATHGoogle Scholar
  25. Franke B, Pène F, Wendler M (2017b) Convergence of \(U\)-statistics indexed by a random walk to stochastic integrals of a Lévy sheet. Bernoulli. 23(1):329–378MathSciNetCrossRefzbMATHGoogle Scholar
  26. Gombay E, Horváth L (2002) Rates of convergence for \(U\)-statistics processes and their bootstrapped versions. J Plann Inference 102:247–272MathSciNetCrossRefzbMATHGoogle Scholar
  27. Guillotin-Plantard N, Ladret V (2005) Limit theorems for \(U\)-statistics indexed by a one dimensional random walk. ESAIM: Probab Stat 9:98–115MathSciNetCrossRefzbMATHGoogle Scholar
  28. Hall P (1990) On the relative performance of bootstrap and Edgeworth approximations of a distribution function. J Multivar Anal 35(1):108–129MathSciNetCrossRefzbMATHGoogle Scholar
  29. Hu Y, Khoshnevisan D (2010) Strong approximations in a charged-polymer model. Period Math Hungar 61:213–224MathSciNetCrossRefzbMATHGoogle Scholar
  30. Hoeffding W (1948) A class of statistics with asymptotically normal distribution. Ann Math Stat 19:293–325MathSciNetCrossRefzbMATHGoogle Scholar
  31. Husková M, Janssen P (1993) Consistency of the generalized bootstrap for degenerate \(U\)-statistics. Ann Stat 21(4):1811–1823MathSciNetCrossRefzbMATHGoogle Scholar
  32. James LF (1997) A study of a class of weighted bootstraps for censored data. Ann Stat 25(4):1595–1621MathSciNetCrossRefzbMATHGoogle Scholar
  33. Korolyuk VS, Borovskikh YV (1990) \(U\)-statistics from bootstrap sampling. Ukrain Mat Zh 42(10):1403–1406MathSciNetCrossRefzbMATHGoogle Scholar
  34. Koroljuk VS, Borovskich Yu V (1994) Theory of \(U\)-statistics. Mathematics and its Applications, vol. 273. Kluwer Academic Publishers Group, DordrechtGoogle Scholar
  35. Lai T, Shao QM, Wang Q (2011) Cramér type moderate deviations for studentized \(U\)-statistics. ESAIM: PS 15:168–179CrossRefzbMATHGoogle Scholar
  36. Li D, Rosalsky A, Al-Mutairi DK (2002) A large deviation principle for bootstrapped sample means. Proc Am Math Soc 130(7):2133–2138MathSciNetCrossRefzbMATHGoogle Scholar
  37. Linnik JV (1961) Limit theorems for the sums of independent variables taking into account the large deviations. I. Teor Verojatnost i Primenen 6:145–163MathSciNetGoogle Scholar
  38. Nikitin YY (2009) Large deviations of \(U\)-empirical Kolmogorov-Smirnov tests, and their efficiency. J Nonparam Stat 22(5):649–668MathSciNetCrossRefzbMATHGoogle Scholar
  39. Nikitin YY, Ponikarov EV (2001) Rough large deviation asymptotics of Chernoff type for von Mises functionals and \(U\)-statistics. In: Proceedings of St. Petersburg Mathematical Society, 1999 (7), 124–167. English translation in AMS. Transl., ser.2, 203, 107–146Google Scholar
  40. Pauly M (2012) Consistency of the subsample bootstrap empirical process. Statistics 46(5):621–626MathSciNetCrossRefzbMATHGoogle Scholar
  41. Petrov VV (1995) Limit theorems of probability theory, Oxford Studies in Probability, vol 4. The Clarendon Press Oxford University Press, New York. Sequences of independent random variables, Oxford Science PublicationsGoogle Scholar
  42. Præstgaard J, Wellner JA (1993) Exchangeably weighted bootstraps of the general empirical process. Ann Probab 21(4):2053–2086MathSciNetCrossRefzbMATHGoogle Scholar
  43. Serfling R, Wang W (2000) A large deviation theorem for \(U\)-processes. Stat Probab Lett 49(2):181–193MathSciNetCrossRefzbMATHGoogle Scholar
  44. Shao J, Tu DS (1995) The jackknife and bootstrap. Springer series in statistics. Springer, New YorkCrossRefzbMATHGoogle Scholar
  45. Shao QM, Zhou WX (2016) Cramér type moderate deviation theorems for self-normalized processes. Bernoulli. 22(5):2029–2079MathSciNetCrossRefzbMATHGoogle Scholar
  46. Singh K (1981) On the asymptotic accuracy of Efron’s bootstrap. Ann Stat 9(6):1187–1195MathSciNetCrossRefzbMATHGoogle Scholar
  47. Tu DS, Zheng ZG (1991) Random weighting: another approach to approximate the unknown distributions of pivotal quantities. J Combin Inf System Sci 16(2–3):249–270MathSciNetzbMATHGoogle Scholar
  48. Vandemaele M, Veraverbeke N (1985) Cramér type large deviations for Studentized \(U\)-statistics. Metrika 32(3–4):165–179MathSciNetCrossRefzbMATHGoogle Scholar
  49. Zhang LX (2001) The strong approximation for the Kesten–Spitzer random walk. Stat Probab Lett 53(2–3):21–26MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Appliquées de CompiègneUniversité de Technologie de CompiègneCompiègne cedexFrance

Personalised recommendations