Skip to main content
Log in

SB-robust estimation of mean direction for some new circular distributions

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

A Publisher Correction to this article was published on 12 September 2019

This article has been updated

Abstract

The most often used distribution for modelling directional data has been the circular normal (CN) (a.k.a. von-Mises) distribution. Recently Kato and Jones (K–J) introduced a family of distribution which includes the CN distribution as a special case. We study the SB-robustness of the circular mean functional (CMF) and show that the CMF is not SB-robust at the family of all symmetric Kato–Jones distributions but is SB-robust at sub-families with bounded parameters. It is also found to be SB-robust for certain sub-families of wrapped-t (WT) distributions, mixtures of K–J distributions and mixtures of K–J and WT distributions. The SB-robustness of the circular trimmed mean functional (CTMF) is also studied and it is found that the CTMF is SB-robust for larger sub-families of symmetric Kato–Jones distributions compared to that of CMF. The SB-robustness of the CMF for asymmetric families of distributions is studied and it is shown that CMF is SB-robust at a sub-family of asymmetric Kato–Jones distributions. The performance of CTM is compared with that of circular mean (CM) through extensive simulation. It is seen that CTM has better robustness properties than the CM both theoretically and practically. Some guidelines for choice of trimming proportion for CTM is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 12 September 2019

    Unfortunately, due to a technical error, the articles published in issues 60:2 and 60:3 received incorrect pagination. Please find here the corrected Tables of Contents. We apologize to the authors of the articles and the readers.

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  • Azzalini A, Genton MG (2008) Robust likelihood methods based on the skew-t and related distributions. Int Stat Rev 76(1):106–129

    Article  MATH  Google Scholar 

  • Bickel PJ (1976) Another look at robustness: a review of reviews and some new developments. Scand J Stat 3:145–168

    MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Lehmann EL (1976) Descriptive statistics for nonparametric models. III. Dispersion. Ann Stat 4(6):1139–1158

    Article  MathSciNet  MATH  Google Scholar 

  • Collet D (1980) Outliers in circular data. Appl Stat 29:50–57

    Article  Google Scholar 

  • Elton SD, Gray DA (1994) The application of circular statistics to specific radar pulse train detection, In Proc.EUSIPCO-94, vol 1, pp 284–287

  • Ferguson DE, Landreth HF, Mckeown JP (1967) Sun compass orientation of the northern cricket frog, Acris crepitans. Anim Behav 15:45–53

    Article  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Fisher NI, Lewis T (1983) Estimating the common mean direction of several circular or spherical distributions with differing dispersions. Biometrika 70:333–341

    Article  MathSciNet  Google Scholar 

  • Gill J, Hangartner D (2010) Circular data in political science and how to handle it. Polit Anal 18:316–336

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series, and products, 5th edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series, and products, 6th edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Hampel FR (1974) The Influence curve and its role in robust estimation. J Am Stat Assoc 69:383–393

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101

    Article  MathSciNet  MATH  Google Scholar 

  • Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Book  Google Scholar 

  • Kato S, Jones MC (2010) A family of distributions on the circle with links to, and applications arising from mobius transformation. J Am Stat Assoc 105(489):249–262

    Article  MATH  Google Scholar 

  • Kato S, Eguchi S (2016) Robust estimation of Location and concentration parameters for the von Mises–Fisher distribution. Stat Pap 57(1):205–234

    Article  MathSciNet  MATH  Google Scholar 

  • Kato S, Shimizu K (2004) A further study of t-distributions on spheres. Technical report, School of fundamental science and technology, Keio University, Yokohama

  • Kim S, SenGupta A (2013) A three-parameter generalized von Mises distribution. Stat Pap 54(3):685–693

    Article  MathSciNet  MATH  Google Scholar 

  • Ko D, Chang T (1993) Robust M-estimators on spheres. J Multivar Anal 45:104–136

    Article  MathSciNet  MATH  Google Scholar 

  • Ko D, Guttorp P (1988) Robustness of estimators for directional data. Ann Stat 16:609–618

    Article  MathSciNet  MATH  Google Scholar 

  • Laha AK, Mahesh KC (2011) SB-robustness of directional mean for circular distributions. J Stat Plan Inference 141:1269–1276

    Article  MathSciNet  MATH  Google Scholar 

  • Laha AK, Mahesh KC (2012) SB-robust estimator for the concentration parameter of circular normal distribution. Stat Pap 53(2):457–467

    Article  MathSciNet  MATH  Google Scholar 

  • Laha AK, Mahesh KC, Ghosh DK (2013) SB-robust estimators of the parameters of the wrapped normal distribution. Commun Stat 42:660–672

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional statistics. Wiley, Chichester

    MATH  Google Scholar 

  • Oldham K, Myland J, Spanier J (2009) An atlas of functions with equator, the atlas function calculator, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Patricia L, Morellato C, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology; a case study approach. Methods for environmental and climate change analysis., Phenological research Springer, Dordrecht

  • Pewsey A (2000) The wrapped skew-normal distribution on the circle. Commun Stat 29:2459–2472

    Article  MathSciNet  MATH  Google Scholar 

  • Pewsey A, Jones MC (2005) A family of symmetric distributions on the circle. J Am Stat Assoc 100(472):1422–1428

    Article  MathSciNet  MATH  Google Scholar 

  • Pewsey A, Lewis T, Jones MC (2007) The wrapped t family of circular distributions. Aust N Z J Stat 49(1):79–91

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • SenGupta A, Laha AK (2001) The slippage problem for the circular normal distribution. Aust N Z J Stat 43(4):461–471

    Article  MathSciNet  MATH  Google Scholar 

  • Shimatani IK, Yoda K, Katsumata N, Sato K (2012) Toward the quantification of conceptual framework for movement ecology using circular statistical modeling. PLoS ONE 7(11):1–12

    Article  Google Scholar 

  • Stigler SM (1973) The asymptotic distribution of the trimmed mean. Ann Stat 1(3):472–477

    Article  MathSciNet  MATH  Google Scholar 

  • Stigler SM (2010) The changing history of robustness. Am Stat 64(4):277–281

    Article  MathSciNet  Google Scholar 

  • Umbach D, Jammalamadaka SR (2009) Building asymmetry into circular distributions. Stat Probab Lett 79:659–663

    Article  MathSciNet  MATH  Google Scholar 

  • Wehrly ET, Shine EP (1981) Influence curves of estimators for directional data. Biometrika 68:334–335

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the anonymous referees and the editor for their valuable comments which led to substantial improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Kumar Laha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Consider the family of distributions\(\mathfrak {I}=\left\{ KJ\left( {0,\kappa ,r} \right) :\kappa >0,0\le r\le r_0 <1 \right\} \). Let \( S(F)=\sqrt{1-\rho _F }\)and \(S^{*}(F)=E_F (d(\Theta ,0))\)for \(\mathrm{F}\in \mathfrak {I}\). Then \(S\mathop \sim \limits ^\mathfrak {I}S^{*}\).

Proof

We note that

$$\begin{aligned} S(F)=\sqrt{1-\frac{1}{2\pi \mathrm{I}_0 \left( \kappa \right) }\int \limits _0^{2\pi } {\cos \theta \left( {\frac{\left( {1-\mathrm{r}^{2}} \right) }{1+\mathrm{r}^{2}-2\mathrm{r}\cos \theta }\exp \left( {\frac{\kappa \left\{ {\left( {1+\mathrm{r}^{2}} \right) \cos \theta -2\mathrm{r}} \right\} }{1+\mathrm{r}^{2}-2\mathrm{r}\cos \theta }} \right) } \right) d\theta } } \end{aligned}$$

is a continuous function of \(\upkappa \) and r. Also,

$$\begin{aligned} S^{*}(F)=\frac{1}{2\pi \mathrm{I}_0 \left( \kappa \right) }\int \limits _0^{2\pi } {\left| {\pi -\left| {\pi -\theta } \right| } \right| \left( {\frac{\left( {1-\mathrm{r}^{2}} \right) }{1+\mathrm{r}^{2}-\mathrm{{2r\, cos}}\theta }\mathrm{exp}\left( {\frac{\kappa \left\{ {\left( {1+\mathrm{r}^{2}} \right) \mathrm{cos}\theta -\mathrm{2r}} \right\} }{1+\mathrm{r}^{2}-\mathrm{{2r\, cos}}\theta }} \right) } \right) d\theta } \end{aligned}$$

is a continuous function of \(\kappa \) and r which is positive on the domain \(\kappa >0\) and \(0\le r\le r_0 <1\).

Hence, \(R(F)=\frac{S(F)}{S^{*}(F)}\) is a continuous function of \(\kappa \) and r on the domain \(\kappa >0\) and \(0\le r\le r_0 <1\). When \(r=0\) we have \(\mathop {\lim }\limits _{\kappa \rightarrow \infty } R(F)=\sqrt{\pi }\) and \(\mathop {\lim }\limits _{\kappa \rightarrow 0} R(F)=\frac{2}{\pi }\) (see proof of Theorem 5.2 of Laha and Mahesh 2011). When \(r\ne 0\) and \(\upkappa \rightarrow \infty \) using the fact that \(KJ\left( {0,\kappa ,r} \right) \) tends to the \(N\left( {0,\kappa ^{-1}\omega _r^2 } \right) \) where \(\omega _\mathrm{r} =\frac{1-r}{1+r}\), we have

$$\begin{aligned} S\left( F \right) =\sqrt{1-\exp \left( {-\frac{\omega _r^2 }{2\kappa }} \right) }. \end{aligned}$$

Expanding and simplifying we get,

$$\begin{aligned} S(F)=\frac{\omega _r }{\sqrt{2\kappa }}\sqrt{1-\frac{1}{2!}\left( {\frac{\omega _r^2 }{2\kappa }} \right) +\frac{1}{3!}\left( {\frac{\omega _r^2 }{2\kappa }} \right) ^{2}+o\left( {(2\kappa )^{-4}} \right) }. \end{aligned}$$

Straightforward calculations show that \(S^{*}\left( F \right) =\omega _r \sqrt{\frac{2}{\pi \kappa }}\) . Then we have \(\mathop {\lim }\limits _{\kappa \rightarrow \infty } R(F)=\frac{\sqrt{\pi }}{2}.\) Again, when \(r\ne 0\) and \(\kappa \rightarrow 0\), using the fact \(\mathrm{KJ}\left( {\mathrm{0,}\,\kappa \mathrm{,r}} \right) \) tends to \(WC\left( {0,\mathrm{r}} \right) \), we have \(S(F)=\sqrt{1-r}\) and \(S^{*}(F)=\frac{1-r^{2}}{2\pi }\int \limits _0^{2\pi } {\frac{\left| {\pi -|\pi -\theta |} \right| }{1+r^{2}-2r\cos \theta }d\theta } \). Using the series expansion of \(\frac{1-r^{2}}{1+r^{2}-2r\cos \theta }=1+2\sum \limits _{p=1}^\infty {(r)^{p}} \cos p\theta \) (see Gradshteyn and Ryzhik 2000), we get \(S^{*}(F)=\frac{\pi }{2}-\frac{4}{\pi }\sum \limits _{n=0}^\infty {\frac{r^{(2n+1)}}{\left( {2n+1} \right) ^{2}}} \).

Therefore, \(\mathop {\lim }\limits _{\kappa \rightarrow 0} R(F)=\sqrt{1-r}\left( {\frac{\pi }{2}-\frac{4}{\pi }\sum _{n=0}^\infty {\frac{r^{(2n+1)}}{\left( {2n+1} \right) ^{2}}} } \right) ^{-1}\).

From the above we can conclude that \(\mathop {\mathrm{sup}}\limits _\mathfrak {I}\mathrm{R}\left( \mathrm{F} \right) <\infty \). Also, it can be seen that \(\mathop {\mathrm{sup}}\limits _\mathfrak {I}\mathrm{R}^{-1}\left( \mathrm{F} \right) <\infty \). Hence \(S\mathop \sim \limits ^\mathfrak {I}S^{*}\).

Hence the lemma is established. \(\square \)

Lemma 2

Consider the family of distributions\(\mathfrak {I}_1^*=\left\{ \alpha \mathrm{KJ}(0,\kappa _1 ,r_1 )+ (1-\alpha )\mathrm{{KJ}}(0,\,\kappa _2 ,r_2 )\mathrm{; 0}<\mathrm{m}\le \kappa _1 ,\kappa _2 \le M,\mathrm{0}\le \mathrm{r}_1 \mathrm{,r}_2 \le \mathrm{r}_0<1,0\le \alpha <1 \right\} .\)Then \(S\mathop \sim \limits ^{\mathfrak {I}_1^*} S^{*}\).

Proof

Let \(D^{*}=\left\{ (\kappa _1 ,\kappa _2 \mathrm{,r}_1 \mathrm{,r}_2 \mathrm{,}\alpha \mathrm{):0}<\mathrm{m}\le \kappa _1 ,\kappa _2 \le M,\mathrm{0}\le \mathrm{r}_1 \mathrm{,r}_2 \le \mathrm{r}_0<1,0\le \alpha <1 \right\} \). Since the p.d.f of \(\alpha ~\mathrm{KJ}\,(0,\kappa _1 ,r_1 )+ (1-\alpha )~\mathrm{KJ}\,(0,\kappa _2 ,r_2 )\) is continuous in \(\kappa _1 ,\kappa _2 ,\mathrm{r}_1 \mathrm{,r}_2 \) and \(\alpha \) we can conclude that both \(S(F)=\sqrt{1-\left| {E_F \left( {\cos \Theta } \right) } \right| }\) and \(S^{*}(F)=E_F (d(\Theta ,0))\) are continuous functions of \(\kappa _1 ,\kappa _2 ,\mathrm{r}_1 \mathrm{,r}_2 \) and \(\alpha \) on the set \(D^{*}\) where \(\mathrm{F}=\alpha \mathrm{F}_1 +\left( {1-\alpha } \right) \mathrm{F}_2 \), \(\mathrm{F}_1 =\mathrm{KJ}\left( {0,\kappa _1 \mathrm{,r}_1 } \right) \) and \(\mathrm{F}_2 =\mathrm{KJ}\left( {0,\kappa _2 \mathrm{,r}_2 } \right) \). Since for all \(F\in \mathfrak {I}_1^*\) we have \(R(F)=S(F)S^{*-1}(F)\) is a continuous function of \(\kappa _1 ,\kappa _2 ,\mathrm{r}_1 \mathrm{,r}_2 \) and \(\alpha \). Therefore, \(\mathop {\mathrm{sup}}\limits _{\mathfrak {I}_1^*}\, \mathrm{R}\left( \mathrm{F} \right) <\infty \). Similarly we can prove \(\mathop {\mathrm {sup}}\limits _{\mathfrak {I}_1^{*} }\, {\mathrm R}^{-1}\left( {\mathrm F} \right) <\infty \). Hence \(S\mathop \sim \limits ^{\mathfrak {I}_1^*} S^{*}\). Hence the lemma is established. \(\square \)

Lemma 3

Consider the family of distributions

Then\(S\mathop \sim \limits ^{\mathfrak {I}_1 } S^{*}\).

Proof

We have \(S\left( F \right) =\sqrt{1+C\left( \nu \right) -\alpha \left( {C\left( \nu \right) +\int \limits _0^{2\pi } {\cos \theta \, \mathrm{f}_1 \left( \theta \right) \mathrm{d}\theta } } \right) }\) and

$$\begin{aligned} S^{*}(F)= & {} \int \limits _0^{2\pi } {\left| {\pi -\left| {\pi -\theta } \right| } \right| \left( {\alpha f_1 \left( \theta \right) +\left( {1-\alpha } \right) f_2 \left( \theta \right) } \right) } d\theta \\= & {} \alpha \int \limits _0^{2\pi } {\left| {\pi -\left| {\pi -\theta } \right| } \right| f_1 \left( \theta \right) } d\theta +\left( {1-\alpha } \right) \int \limits _0^{2\pi } {\left| {\pi -\left| {\pi -\theta } \right| } \right| f_2 \left( \theta \right) } d\theta \\= & {} I_1 +I_2 \end{aligned}$$

Note that \(I_1 \) is a continuous function of \(\kappa \) and r which is positive on the domain \(\left\{ {\kappa >0} \right\} \cap \{0\le r\le r_0 <1\}\). Also, following arguments given in the proof of theorem 3 it can be seen that, as \(\nu \rightarrow \infty \), \(I_2 \) is finite. Hence we can conclude that \(\mathop {\mathrm{sup}}\limits _{\mathfrak {I}_1 }\, \mathrm{R}\left( \mathrm{F} \right) <\infty \). Following arguments similar to above, it can be seen that \(\mathop {\mathrm{sup}}\limits _{\mathfrak {I}_1 }\, \mathrm{R}^{-1}\left( \mathrm{F} \right) <\infty \). Hence \(S\mathop \sim \limits ^{\mathfrak {I}_1 } S^{*}\).

Hence the lemma is established. \(\square \)

Lemma 4

Consider the family of distributions

\(\mathfrak {I}_2 =\left\{ {\mathrm{{WT}}\left( {0,\uplambda ,\upnu } \right) :0<\uplambda _0 \le \uplambda \le \uplambda _1 <\infty ,\upnu \ge \upnu _0 } \right\} .\)Then \(S\mathop \sim \limits ^{\mathfrak {I}_2 } S^{*}\).

Proof

Let \(S(F)=Q_1 \left( {\lambda ,\nu } \right) =\sqrt{1-C\left( {\lambda ,\nu } \right) }\) and \(S^{*}(F)=Q_2 (\lambda ,\nu )=\int \limits _0^{2\pi } {\left| {\pi -\left| {\pi -\theta } \right| } \right| } f\left( \theta \right) d\theta \) where \(f(\theta )\) is density of \(WT\left( {0,\lambda ,\nu } \right) \) distribution. Note that both are continuous functions of \(\lambda \) and \(\nu \), \(\mathop {\lim }\limits _{\nu \rightarrow \infty } Q_1 (\lambda ,\nu )<\infty \) and \(\mathop {\lim }\limits _{\nu \rightarrow \infty } Q_2 (\lambda ,\nu )<\infty \). Hence \(\mathop {\mathrm{sup}}\limits _{\mathfrak {I}_2 } \mathrm{R}\left( \mathrm{F} \right) <\infty \) and \(\mathop {\mathrm{sup}}\limits _{\mathfrak {I}_2 } \mathrm{R}^{\mathrm{-1}}\left( \mathrm{F} \right) <\infty .\) Thus \(S\mathop \sim \limits ^{\mathfrak {I}_2 } S^{*}\).

Hence the lemma is established. \(\square \)

Lemma 5

Let \(F\in \mathfrak {I}_1^{**} \). In the expansion \(\rho _{\gamma ,\mathrm{F}} =C_1 +\frac{C_2 }{\kappa }+\frac{C_3 }{\kappa ^{2}}+\cdots \), we have \(C_1 >0\).

Proof

Consider \(\rho _{\gamma ,F} =\frac{1}{1-2\gamma }\int \limits _{B_\gamma }^{A_\gamma } {\cos \theta ~~\mathrm{f}\left( \theta \right) } d\theta =\frac{2}{1-2\gamma }\int \limits _0^{{\omega _r }/{\sqrt{\kappa }}} {\cos \theta ~\mathrm{f}~\left( \theta \right) } d\theta \). Now, since \(\cos \theta ~~\mathrm{f}\left( \theta \right) \) is a monotonically decreasing function in the interval \(\left( {0,A_\gamma } \right) \) we have

$$\begin{aligned} \rho _{\gamma ,F} \ge \frac{2}{1-2\gamma }\frac{\omega _r }{\sqrt{\kappa }}\left[ {\cos \left( {\frac{\omega _r }{\sqrt{\kappa }}} \right) \mathrm{f}\left( {\frac{\omega _r }{\sqrt{\kappa }}} \right) } \right] . \end{aligned}$$

Using the series expansion of \(\mathrm{cos }\left( {\frac{\omega _r }{\sqrt{\kappa }}} \right) \) and replacing \(f\left( \theta \right) \) by \(\mathrm{f}\left( {\frac{\omega _r }{\sqrt{\kappa }}} \right) \) we get, \(\rho _{\gamma ,F} \ge \frac{1}{\pi \left( {1-2\gamma } \right) }\mathop {\lim }\limits _{\kappa \rightarrow \infty } \frac{\exp \left( {\tau \left( {\kappa ,\mathrm{r}} \right) } \right) }{\sqrt{\kappa }I_0 \left( \kappa \right) }\) where \(\tau \left( {\kappa ,\mathrm{r}} \right) =\left\{ {\frac{\kappa \left\{ {\left( {1+r^{2}} \right) \left( {1-\frac{\omega _r^2 }{\kappa }} \right) -2r} \right\} }{1+r^{2}-2r\left( {1-\frac{\omega _r^2 }{\kappa }} \right) }-\kappa } \right\} \).

Using \(I_0 \left( \kappa \right) =\frac{\exp \left( \kappa \right) }{\sqrt{2\pi \kappa }}\) for large \(\kappa \)(see Oldham et al. 2009) and simplifying \(\exp \left( {\tau \left( {\kappa ,\mathrm{r}} \right) } \right) \) as \(\kappa \rightarrow \infty \) we get \(\rho _{\gamma ,F} \ge \frac{\sqrt{2}}{\sqrt{\pi }\left( {1-2\gamma } \right) }\frac{1}{\omega _r }\exp \left( {-\frac{1}{2\omega _r^2 }} \right) =\tau _1 \left( r \right) \). Since \(0\le \mathrm{r}_0 \le r\le r_1 <1\) we get \(\tau _1 \left( {r_1 } \right) <1\). Also we know that \(\tau _1 \left( r \right) >0\) and hence \(0<\tau _1 \left( {r_1 } \right) <1\). Thus, \(C_1 >0\).

Hence the lemma is established. \(\square \)

Lemma 6

Let \(\mathfrak {I}_1^{**} =\left\{ {KJ\left( {0,\kappa ,r} \right) \mathrm{; }\kappa >M,\mathrm{0}\le \mathrm{r}_0 \le r\le r_1 <1} \right\} \)and \(\mathfrak {I}_2^{**} =\left\{ {KJ\left( {0,\kappa ,r} \right) \mathrm{; }\kappa<m,\mathrm{0}\le \mathrm{r}_0 \le r\le r_1 <1} \right\} \). Then (a) \(S_1 \mathop \sim \limits ^{\mathfrak {I}_1^{**} } S_2 \)and (b) \(S_1 \mathop \sim \limits ^{\mathfrak {I}_2^{**} } S_2 \).

Proof

(a) Note that as \(\kappa \rightarrow \infty \), the \(\mathrm{{KJ}}\left( {0,\upkappa , \mathrm{r}} \right) \) tends to \(\mathrm{N}\left( {0, \upomega _\mathrm{r}^2 } \right) \) distribution where \(\omega _\mathrm{r} =\frac{1-\mathrm{r}}{1+\mathrm{r}}\). Using this we get \(\mathrm{A}_\upgamma =\frac{\upomega _r \Phi ^{\mathrm{-1}}\left( {1-\upgamma } \right) }{\sqrt{\upkappa }}\). Since \(\mathrm{{S_2}} \left( \mathrm{F} \right) =\sqrt{\mathrm{E}_{\upgamma ,\mathrm{F}} \left( {1-\cos \Theta } \right) }\), using Jensen’s inequality we get

$$\begin{aligned} \sqrt{\mathrm{E}_{\upgamma ,\mathrm{F}} \Big ( {1-\cos \Theta } \Big )}\ge & {} \mathrm{E}_{\upgamma ,\mathrm{F}} \left( {\sqrt{1-\cos \Theta }} \right) \cong \mathrm{E}_{\upgamma ,\mathrm{F}} \left( {\sqrt{\frac{\Theta ^{2}}{2}}} \right) \\= & {} \displaystyle \frac{1}{\sqrt{2}}\mathrm{E}_{\upgamma ,\mathrm{F}} \left( {\left| \Theta \right| } \right) =\frac{\sqrt{2}}{\left( {1-2\upgamma } \right) }\int \limits _0^{\mathrm{A}_\upgamma } {\uptheta \mathrm{f}\left( \uptheta \right) } \mathrm{d}\uptheta . \end{aligned}$$

Note that \({S}_1 ({F})=\frac{2}{\left( {1-2\gamma } \right) }\int \limits _0^{{ A}_\gamma } {\theta {f}\left( \theta \right) } {d}\theta \) and hence \(\mathop {\sup }\limits _{\mathfrak {I}_1^{**} } \frac{\mathrm{S}_1 (F)}{\mathrm{S}_2 (F)}\le \sqrt{2}<\infty \). Further,

$$\begin{aligned} \mathrm{S}_1 (\mathrm{F})\cong & {} \sqrt{\frac{2}{\uppi }}\frac{\sqrt{\upkappa }}{\left( {1-2\upgamma } \right) \upomega _r }\int \limits _0^{\mathrm{A}_\upgamma } \uptheta \mathrm{exp} \left( {-\frac{\uptheta ^{2}\upkappa }{2\upomega _\mathrm{r} }} \right) \mathrm{d}\uptheta \cong \sqrt{\frac{2}{\uppi }}\frac{\sqrt{\upkappa }}{\left( {1-2\upgamma } \right) \upomega _\mathrm{r} }\int \limits _0^{\mathrm{A}_\upgamma } \uptheta \left( {1-\frac{\uptheta ^{2}\upkappa }{2\upomega _\mathrm{r} }} \right) \mathrm{d}\uptheta \\\cong & {} \frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{2}\upomega _\mathrm{r} }{\sqrt{2\uppi \upkappa }\left( {1-2\upgamma } \right) }\left[ {1-\frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{2}}{4}} \right] . \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} \mathrm{S}_2 \left( \mathrm{F} \right) &{}=\sqrt{\frac{\sqrt{\mathrm{k}}}{\left( {1-2\upgamma } \right) \upomega _\mathrm{r} \uppi }\int \limits _0^{\mathrm{A}_\upgamma } {\left( {1-\cos \theta } \right) \exp \left( {-\frac{\uptheta ^{2}\upkappa }{2\upomega _\mathrm{r}^2 }} \right) \mathrm{d}\uptheta } }\cong \sqrt{\frac{\sqrt{\mathrm{k}}}{\left( {1-2\upgamma } \right) \upomega _\mathrm{r} \uppi }\int \limits _0^{\mathrm{A}_\upgamma } {\frac{\uptheta ^{2}}{2}\left( {1-\frac{\uptheta ^{2}\upkappa }{2\upomega _\mathrm{r}^2 }} \right) \mathrm{d}\uptheta } } \\ \quad &{}\cong \frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{3/2}\upomega _\mathrm{r} }{\sqrt{2\uppi \upkappa }\sqrt{\left( {1-2\upgamma } \right) }}\left[ {\frac{1}{3}-\frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{2}}{10}} \right] ^{1/2}. \\ \end{array} \end{aligned}$$

Hence \(\frac{\mathrm{S}_2 \left( \mathrm{F} \right) }{\mathrm{S}_1 \left( \mathrm{F} \right) }\cong \frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{{-1}/2}\sqrt{\left( {1-2\upgamma } \right) }\left[ {\frac{1}{3}-\frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{2}}{10}} \right] ^{1/2}}{\left[ {1-\frac{\left( {\Phi ^{-1}\left( {1-\upgamma } \right) } \right) ^{2}}{4}} \right] }\). Therefore, \(\mathop {\sup }\limits _{\mathfrak {I}_1^{**} } \frac{\mathrm{S}_2 (\mathrm{F})}{\mathrm{S}_1 (\mathrm{F})}<\infty \).

Thus,\(S_1 \mathop \sim \limits ^{\mathfrak {I}_1^{**} } S_2 \).

(b) We have \(S_1 \left( F \right) =\frac{1}{2\pi \left( {1-2\gamma } \right) }\left\{ {\alpha ^{2}\left( r \right) +4\sum \limits _{p=1}^\infty {r^{p}} \left( {\frac{\alpha \left( r \right) S_{p,\mathrm{0}} }{\mathrm{p}}+\frac{C_{p,\mathrm{0}} -1}{\mathrm{p}^{2}}} \right) } \right\} \) where \(S_{p,\nu } =\sin \left[ {p\alpha \left( r \right) -\nu } \right] \) and \(C_{p,\nu } =\cos \left[ {p\alpha \left( r \right) -\nu } \right] \) and \(S_2 \left( F \right) =\sqrt{1-\rho _{\gamma ,\mathrm{F}} }\). Now a straight forward calculation yields \(\mathop {\sup }\limits _{\mathfrak {I}_2^{**} } R(F)<\infty \) and \(\mathop {\sup }\limits _{\mathfrak {I}_2^{**} } R^{-1}(F)<\infty \). Thus, \(S_1 \mathop \sim \limits ^{\mathfrak {I}_2^{**} } S_2 \).

Hence the lemma is established. \(\square \)

Lemma 7

Let \(H\left( r \right) =\int \limits _0^\pi {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }} d\theta \), then \(\mathop {\lim }\limits _{r\rightarrow 1^{-}} H\left( r \right) =0\).

Proof

Let \(g\left( \theta \right) =\frac{\theta }{1+r^{2}-2r\cos \theta }\), \(g^{{\prime }}\left( \theta \right) =\frac{\left( {1+r^{2}-2r\cos \theta } \right) -\theta \left( {2r\sin \theta } \right) }{\left( {1+r^{2}-2r\cos \theta } \right) ^{2}}\)

$$\begin{aligned} g^{{\prime }}\left( \theta \right) =0\Rightarrow \frac{1+\mathrm{r}^{2}}{2r}=\cos \theta +\theta \sin \theta . \end{aligned}$$

Now let \(k\left( \theta \right) =\cos \theta +\theta \sin \theta \). Then \(k^{{\prime }}\left( \theta \right) =\theta \cos \theta \). Note that \(k^{{\prime }}\left( \theta \right) \ge 0\) for all \(\theta \in \left[ {0,\frac{\pi }{2}} \right] \) and \(k^{{\prime }}\left( \theta \right) <0 \) for all \(\theta \in \left[ {\frac{\pi }{2},\pi } \right] \). Therefore \(k\left( \theta \right) \) is increasing in \(\left[ {0,\frac{\pi }{2}} \right] \) and decreasing in \(\left( {\frac{\pi }{2},\pi } \right] \). Hence \(k\left( \theta \right) \) has a maximum value at \(\theta =\frac{\pi }{2}\).

Thus \(k\left( 0 \right) \le \theta \sin \theta +\cos \theta \le k\left( {\frac{\pi }{2}} \right) \Rightarrow \)

$$\begin{aligned} 1\le \theta \sin \theta +\cos \theta \le \frac{\pi }{2}\,\,\mathrm{for~ all}\,\, \theta \in \left[ {0,\frac{\pi }{2}} \right] \end{aligned}$$
(9)

Now since \(\frac{1+r^{2}}{2r}>1\) for \(0<r<1\) and \(\frac{1+r^{2}}{2r}\rightarrow 1\)as \(r\rightarrow 1^{-}\). Using (9) we get \(\frac{1+\mathrm{r}^{2}}{2r}=\cos \theta +\theta \sin \theta \) has a solution \(\theta ^{*}\)for r close to 1. Observe that \(g^{{\prime }}\left( \theta \right) >0\) when \(\theta <\theta ^{*}\)and \(g^{{\prime }}\left( \theta \right) <0\) for \(\theta >\theta ^{*}\). Therefore \(g\left( \theta \right) \) has a maximum value at \(\theta ^{*}\).

Further note that \(\theta ^*=\theta _{r} \rightarrow 0\) as \(r\rightarrow 1^{-}\). Using the approximation \(\sin \theta \approx \theta \) for small \(\theta \) and \(\cos \theta \approx 1-\frac{\theta ^{2}}{2}\) for small \(\theta \), we have

$$\begin{aligned} \theta ^{*}\sin \theta ^{*}+\cos \theta ^{*}=\theta ^{{*}{2}}+\left( {1-\frac{\theta ^{{*}{2}}}{2}} \right) =1+\frac{\theta ^{{*}{2}}}{2}=\frac{1+r^{2}}{2r}\; \mathrm{for}\,\, r\,\, \mathrm{close\,\, to\,\, 1.} \end{aligned}$$

Solving we get \(\theta ^{*}=\frac{\left( {1-r} \right) }{\sqrt{r}}\) for r close to 1.

Thus \(g\left( {\theta ^{*}} \right) =\frac{\theta ^{*}}{1+r^{2}-2r\cos \theta ^{*}}\approx \frac{1}{\sqrt{r}\left( {1-r} \right) }\) for r close to 1.

Now \(\int \limits _0^\pi {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta } =\int \limits _0^\delta {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta +} \int \limits _\delta ^\pi {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta } \) for any small \(\delta >0\).

Now \(\mathop {\lim }\limits _{r\rightarrow 1^{-}} \int \limits _\delta ^\pi {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta =\int \limits _\delta ^\pi {\mathop {\lim }\limits _{r\rightarrow 1^{-}} } } \frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta =0\) as \(\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }\) is a continuous function of r. Again, \(\int \limits _0^\delta {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta } =\left( {1-r^{2}} \right) \int \limits _0^\delta {g\left( \theta \right) } d\theta \le \left( {1-r^{2}} \right) \delta g\left( {\theta ^{*}} \right) \approx \frac{1-r^{2}}{\sqrt{r}\left( {1-r} \right) }\delta =\frac{\left( {1+r} \right) \delta }{\sqrt{r}}\) for r close to 1. Therefore \(\int \limits _0^\delta {\frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }} d\theta \le \frac{\left( {1+r} \right) }{\sqrt{r}}\delta \le 3\delta \) for r close to 1. Since \(\delta \) is arbitrary, we conclude\(\mathop {\lim }\limits _{r\rightarrow 1^{-}} \int \limits _0^\pi \frac{\left( {1-r^{2}} \right) \theta }{1+r^{2}-2r\cos \theta }d\theta =0 \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laha, A.K., Pravida Raja, A.C. & Mahesh, K.C. SB-robust estimation of mean direction for some new circular distributions. Stat Papers 60, 877–902 (2019). https://doi.org/10.1007/s00362-016-0853-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0853-9

Keywords

Navigation