Skip to main content
Log in

Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we consider the capital asset pricing model under the multivariate normal distribution for modeling asset returns. We develop and implement local influence diagnostic techniques not based on likelihood displacement. The main interest is to consider the test of mean–variance efficiency of a given portfolio as objective function. Sensitivity of maximum likelihood estimators of slopes is also considered. For this purpose, first and second-order local influence measures are calculated under a case weights perturbation scheme. In particular, for our objective functions, which have nonzero first derivative at the critical point, the proposed second-order measures are scale invariant, unlike the normal curvature. The performance of the proposed measures is illustrated by using two real data sets as well as a simulation study and a simulated data set. Empirical results seem to indicate that the Wald test statistic is less sensitive to atypical returns than maximum likelihood estimators of the slopes. By the other hand, there is some evidence about the convenience of jointly using first and second-order influence measures, to detect months/days with outlying returns, principally in Wald test statistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amenc N, Le Sourd V (2003) Portfolio theory and performance analysis. Wiley, New York

    Google Scholar 

  • Bartholdy J, Peare P (2003) Unbiased estimation of expected return using. Int Rev Financ Anal 12:69–81

    Article  Google Scholar 

  • Broquet C, Cobbaut R, Gillet R, van den Berg A (2004) Gestion de Portefeuille, 4th edn. De Boeck Université, Bruxelles

    Google Scholar 

  • Cademartori D, Romo C, Campos R, Galea M (2003) Robust estimation of systematic risk using the t distribution in the Chilean stock markets. Appl Econ Lett 10:447–453

    Article  Google Scholar 

  • Cadigan NG, Farrell PJ (2002) Generalized local influence with applications to fish stock cohort analysis. Appl Stat 51:469–483

    MATH  Google Scholar 

  • Campbell J, Lo A, MacKinlay A (1997) Econometrics of financial markets. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Chatterjee S, Hadi AS (1988) Sensitivity analysis in linear regression. Wiley, New York

    Book  MATH  Google Scholar 

  • Chen F, Zhu H, Lee S (2009) Perturbation selection and local influence analysis for nonlinear structural equation model. Psychometrika 74:493–516

    Article  MathSciNet  MATH  Google Scholar 

  • Chen F, Zhu H, Song X, Lee S (2010) Perturbation selection and local influence analysis for generalized linear mixed models. J Comput Gr Stat 19:826–842

    Article  MathSciNet  Google Scholar 

  • Cook RD (1986) Assessment of local influence. J R Stat Soc B 48:133–169

    MathSciNet  MATH  Google Scholar 

  • Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, London

    MATH  Google Scholar 

  • Díaz-García JA, Galea M, Leiva-Sánchez V (2003) Influence diagnostics for elliptical multivariate regression models. Commun Stat Theory Methods 32:625–641

    Article  MathSciNet  MATH  Google Scholar 

  • Elsas R, El-Shaer M, Theissen E (2003) Beta and returns revisited evidence from the German stock market. J Int Financ Mark Inst Money 13:1–18

    Article  Google Scholar 

  • Escobar E, Meeker W (1992) Assessing influence in regression analysis with censored data. Biometrics 48:507–528

    Article  MathSciNet  MATH  Google Scholar 

  • Fama E, French K (1992) The cross-section of expected stock returns. J Financ 47:427–465

    Article  Google Scholar 

  • Fung WK, Kwan CW (1997) A note on local influence based on normal curvature. J R Stat Soc Ser B 59:839–843

    Article  MathSciNet  MATH  Google Scholar 

  • Galea M, Bolfarine H, de Castro M (2002) Local influence in comparative calibration models. Biom J 44:59–81

    Article  MathSciNet  MATH  Google Scholar 

  • Galea M, Díaz-García J, Vilca F (2008) Influence diagnostics in the capital asset pricing model under elliptical distributions. J Appl Stat 35(2):179–192

    Article  MathSciNet  Google Scholar 

  • Galea M, Paula GA, Bolfarine H (1997) Local influence in elliptical linear regression models. Statistician 46:71–79

    Google Scholar 

  • Gibbons M, Ross S, Shanken J (1989) A test of the efficiency of a given portfolio. Econometrica 57:1121–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Giménez P, Galea M (2013) Influence measures on corrected score estimators in functional heteroscedastic measurement error models. J Multivar Anal 114:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Hadi AS, Nyquist H (1999) Frechet distance as a tool for diagnosing multivariate data. Linear Algebra Appl 289:183–201

    Article  MathSciNet  MATH  Google Scholar 

  • Lawrance AJ (1988) Regression transformation diagnostics using local influence. J Am Stat Assoc 83:1067–1072

    Article  MathSciNet  Google Scholar 

  • Lee SY, Wang SJ (1996) Sensitivity analysis of structural equation models. Psychometrika 61:93–108

    Article  MathSciNet  MATH  Google Scholar 

  • Lesaffre E, Verbeke G (1998) Local influence in linear mixed models. Biometrics 54:570–582

    Article  MATH  Google Scholar 

  • Levy H (2012) The capital asset pricing model in the 21st century: analytical, empirical, and behavioral perspectives. Cambridge University Press, New York

    Google Scholar 

  • Lintner J (1965) The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev Econ Stat 41:13–37

    Article  Google Scholar 

  • Liu S (2000) On local influence for elliptical linear models. Stat Pap 41:211–224

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S (2002) Local influence in multivariate elliptical linear regression models. Linear Algebra Appl 354:159–174

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus JR, Neudecker H (1979) The commutation matrix: some properties and applications. Ann Stat 7:381–394

    Article  MathSciNet  MATH  Google Scholar 

  • Mossin J (1966) Equilibrium in capital asset market. Econometrica 35:768–783

    Article  Google Scholar 

  • Murray MK, Rice JW (1993) Differential geometry and statistics. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Poon WY, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc Ser B 61:51–61

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ruppert D, Matteson D (2015) Statistics and data analysis for financial rngineering, with R examples, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Sharpe W (1964) Capital asset prices: a theory of markets equilibrium under conditions of risk. J Financ 19:425–442

    Google Scholar 

  • Shi L (1997) Local influence in principal components analysis. Biometrika 84:175–186

    Article  MathSciNet  MATH  Google Scholar 

  • Shi X, Zhu H, Ibrahim JG (2009) Local influence for generalized linear models with missing covariates. Biometrics 65:1164–1174

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas W, Cook RD (1990) Assessing influence on predictions from generalized linear models. Technometrics 32:59–65

    Article  MathSciNet  Google Scholar 

  • Uribe-Opazo M, Borssoi J, Galea M (2012) Influence diagnostics in Gaussian spatial linear models. J Appl Stat 39(3):615–630

    Article  MathSciNet  Google Scholar 

  • van der Hart J, Slagter E, van Dijk D (2003) Stock selection strategies in emerging markets. J Empir Financ 10:105–132

    Article  Google Scholar 

  • Wu X, Luo Z (1993) Second-order approach to local influence. J R Stat Soc B 55:929–939

    MATH  Google Scholar 

  • Zhao Y, Lee AH (1998) Influence diagnostics for simultaneous equations models. Aust N Z J Stat 40:345–357

    Article  MATH  Google Scholar 

  • Zhu HT, Lee SY (2001) Local influence for incomplete data models. J R Stat Soc B 63:111–126

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu HT, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu F, Shi L, Liu S (2015) Influence diagnostics in log-linear integer-valued GARCH models. AStA Adv Stat Anal 99:311–335

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu F, Liu S, Shi L (2016) Local influence analysis for Poisson autoregression with an application to stock transaction data. Stat Neerl 70:4–25

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the Associate Editor and two referees for their helpful comments and suggestions, leading to improvement of the paper. Also, we acknowledge the partial financial support from Projects Fondecyt 1110318 and 1150325, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Galea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galea, M., Giménez, P. Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model. Stat Papers 60, 293–312 (2019). https://doi.org/10.1007/s00362-016-0838-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0838-8

Keywords

Mathematics Subject Classification

Navigation