Skip to main content
Log in

Stochastic properties of a weighted frailty model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper is intended to consider a weighted proportional hazards model and the arising mixture model from it which is called weighted frailty model and study some properties in the context of reliability theory. It is shown that the frailty random variable and the population level variable are negatively likelihood ratio dependent. Closure properties of the model with respect to some stochastic orders and some aging classes of life distributions are investigated. Finally, preservation of some stochastic orders under the structure of the model is studied. Various illustrative examples are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Badía FG, Berrade MD, Campos CA (2002) Aging properties of the additive and proportional hazard mixing models. Reliab Eng Syst Saf 78:165–172

    Article  Google Scholar 

  • Barlow RE, Proschan F (1981) Statistical theory of reliability and life testing. Silver Spring, Maryland

    MATH  Google Scholar 

  • Blazej P (2008) Preservation of classes of life distributions under weighting with a general weight function. Stat Probab Lett 78:3056–3061

    Article  MathSciNet  MATH  Google Scholar 

  • Cha JH, Finkelstein M (2013) The failure rate dynamics in heterogeneous populations. Reliab Eng Syst Saf 112:120–128

    Article  Google Scholar 

  • Cha JH, Finkelstein M (2014) Some notes on unobserved parameters (frailties) in reliability modeling. Reliab Eng Syst Saf 123:99–103

    Article  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman & Hall, New York

    Google Scholar 

  • Fernández-Ponce JM, Pellerey F, Rodríguez-Griñolo MR (2015) Some stochastic properties of conditionally dependent frailty models. Statistics 50(3):649–666

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RC, Kirmani SNUA (2006) Stochastic comparisons in frailty models. J Stat Plan Inference 136:3647–3658

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RC, Gupta RD (2009) General frailty model and stochastic orderings. J Stat Plan Inference 139:3277–3287

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta N, Dhariyal ID, Misra N (2011) Reliability under random operating environment: frailty models. J Comb Inf Syst Sci 36:117–133

    MATH  Google Scholar 

  • Horny G (2009) Inference in mixed proportional hazard models with K random effects. Stat Pap 50:481–499

    Article  MathSciNet  MATH  Google Scholar 

  • Jain K, Singh H, Bagai I (1989) Relations for reliability measures of weighted distributions. Commun Stat Theory Methods 18:4393–4412

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S (1968) Total positivity. Stanford University Press, Redwood City

    MATH  Google Scholar 

  • Kayid M, Ahmad IA (2004) On the mean inactivity time ordering with reliability applications. Reliab Eng Syst Saf 18:395–409

    MathSciNet  MATH  Google Scholar 

  • Kayid M, Izadkhah S, Zuo MJ (2015) Some results on the relative ordering of two frailty models. Stat Pap 1–15. doi:10.1007/s00362-015-0697-8

  • Kayid M, Izadkhah S, Mesfioui M (2016) Relative stochastic comparisons of additive frailty models. J Inequal Appl 2016(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar D, Klefsjö B (1994) Proportional hazards model: a review. Reliab Eng Syst Saf 44:177–188

    Article  Google Scholar 

  • Lai CD, Xie M (2006) Stochastic ageing and dependence for reliability. Springer, New York

    MATH  Google Scholar 

  • Li X, Ling X, Li P (2009) A new stochastic order based upon Laplace transform with applications. J Stat Plan Inference 139:2624–2630

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Da G, Zhao P (2012) Competing between two groups of individuals following frailty models. Methodol Comput Appl Probab 14:1033–1051

    Article  MathSciNet  MATH  Google Scholar 

  • Luvalle MJ, Lefevre BG, Kannan S (2004) Design and analysis of accelerated tests for mission critical reliability. Chapman & Hall, New York

    Book  MATH  Google Scholar 

  • Marshall AW, Olkin I (2007) Life distributions. Springer, New York

    MATH  Google Scholar 

  • Miller RG Jr (1981) Survival analysis. Wiley, New York

    Google Scholar 

  • Misra N, Van Der Meulen EC (2003) On stochastic properties of m-spacings. J Stat Plan Inference 115:683–697

    Article  MathSciNet  MATH  Google Scholar 

  • Misra N, Gupta N, Gupta RD (2009) Stochastic comparisons of multivariate frailty models. J Stat Plan Inference 139:2084–2090

    Article  MathSciNet  MATH  Google Scholar 

  • Misra AK, Misra N (2012) Stochastic properties of conditionally independent mixture models. J Stat Plan Inference 142:1599–1607

    Article  MathSciNet  MATH  Google Scholar 

  • Nanda AK, Bhattacharjee S, Alam SS (2007) Properties of aging intensity function. Stat Probab Lett 77:365–373

    Article  MathSciNet  MATH  Google Scholar 

  • Nanda AK, Das S (2011) Dynamic proportional hazard rate and reversed hazard rate models. J Stat Plan Inference 141:2108–2119

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Newby M (1994) Perspective on weibull proportional-hazards models. IEEE Trans Reliab 43:217–223

    Article  Google Scholar 

  • Ortega EM (2009) A note on some functional relationships involving the mean inactivity time order. IEEE Trans Reliab 58:172–178

    Article  Google Scholar 

  • Patil GP, Rao CR (1978) Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34:179–189

    Article  MathSciNet  MATH  Google Scholar 

  • Patil GP (2002) Weighted distributions. Wiley, New Yrok

    Google Scholar 

  • Rao CR (1965) On discrete distributions arising out of methods of ascertainment. Sankhy Ind J Stat Ser A 27:311–324

    MathSciNet  MATH  Google Scholar 

  • Scheaffer RL (2009) Size-biased sampling. Technometrics 14:635–644

    Article  MATH  Google Scholar 

  • Shaked M, Shanthikumar JG (1995) Hazard rate ordering of k-out-of-n systems. Stat Probab Lett 23:1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, New York

    Book  MATH  Google Scholar 

  • Vaupel JW, Manton KG, Stallard E (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:439–454

    Article  Google Scholar 

  • Xu M, Li X (2008) Negative dependence in frailty models. J Stat Plan Inference 138:1433–1441

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two referees for their constructive comments which lead to the current improved version. The second author would like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research Group No. (RGP-1435-036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jarrahiferiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrahiferiz, J., Kayid, M. & Izadkhah, S. Stochastic properties of a weighted frailty model. Stat Papers 60, 53–72 (2019). https://doi.org/10.1007/s00362-016-0826-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0826-z

Keywords

Mathematics Subject Classification

Navigation