Recovery from discrete wound severities in side-blotched lizards (Uta stansburiana): implications for energy budget, locomotor performance, and oxidative stress

Abstract

Wounding events (predation attempts, competitive combat) result in injuries and/or infections that induce integrated immune responses for the recovery process. Despite the survival benefits of immunity in this context, the costs incurred may require investment to be diverted from traits contributing to immediate and/or future survival, such as locomotor performance and oxidative status. Yet, whether trait constraints manifest likely depends on wound severity and the implications for energy budget. For this study, food intake, body mass, sprint speed, and oxidative indices (reactive oxygen metabolites, antioxidant capacity) were monitored in male side-blotched lizards (Uta stansburiana) healing from cutaneous wounds of discrete sizes (control, small, large). Results indicate that larger wounds induced faster healing, reduced food consumption, and led to greater oxidative stress over time. Granted wounding did not differentially affect body mass or sprint speed overall, small-wounded lizards with greater wound area healed had faster sprint speeds while large-wounded lizards with greater wound area healed had slower sprint speeds. During recovery from either wound severity, however, healing and sprint performance did not correspond with food consumption, body mass loss, nor oxidative status. These findings provide support that energy budget, locomotor performance, and oxidative status of a reptile are linked to wound recovery to an extent, albeit dependent on wound severity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

https://doi.org/10.26078/XM4Q-FP37

References

  1. Adelman JS, Martin LB (2009) Vertebrate sickness behaviors: adaptive and integrated neuroendocrine immune responses. Integr Comp Biol 49(3):202–214

    CAS  PubMed  Article  Google Scholar 

  2. Adolph SC, Pickering T (2008) Estimating maximum performance: effects of intraindividual variation. J Exp Biol 211(8):1336–1343

    PubMed  Article  Google Scholar 

  3. Ahlmann-Eltze C (2019) ggsignif: Significance Brackets for ‘ggplot2’. R package version 060

  4. Alibardi L (2010) Ultrastructural features of the process of wound healing after tail and limb amputation in lizard. Acta Zoologica 91(3):306–318

    Google Scholar 

  5. Alonso-Alvarez C, Tella JL (2001) Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can J Zool 79(1):101–105

    Article  Google Scholar 

  6. Anderson ML, Cavalieri CN, Rodríguez-Romero F, Fox SF (2012) The differential effect of tail autotomy on sprint performance between the sexes in the lizard Uta stansburiana. J Herpetol 46(4):648–652

    Article  Google Scholar 

  7. Ardia DR, Parmentier HK, Vogel LA (2011) The role of constraints and limitation in driving individual variation in immune response. Funct Ecol 25(1):61–73

    Article  Google Scholar 

  8. Ashley NT, Weil ZM, Nelson RJ (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406

    Article  Google Scholar 

  9. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    PubMed  Article  Google Scholar 

  10. Bennett AF (1990) Thermal dependence of locomotor capacity. Am J Physiol Regul Integr Compar Physiol 259(2):R253–R258

    CAS  Article  Google Scholar 

  11. Bennett AF (1994) Exercise performance of reptiles. Adv Vet Sci Comp Med 38:113–113

    Google Scholar 

  12. Bertrand S, Criscuolo F, Faivre B, Sorci G (2006) Immune activation increases susceptibility to oxidative tissue damage in zebra finches. Funct Ecol 20(6):1022–1027

    Article  Google Scholar 

  13. Boggs C (1992) Resource allocation: exploring connections between foraging and life history. Funct Ecol 6(5):508–518

    Article  Google Scholar 

  14. Bonine KE, Garland T Jr (1999) Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J Zool 248(2):255–265

    Article  Google Scholar 

  15. Braude S, Tang-Martinez Z, Taylor GT (1999) Stress, testosterone, and the immunoredistribution hypothesis. Behav Ecol 10(3):345–350

    Article  Google Scholar 

  16. Brodie ED III, Brodie ED Jr (1990) Tetrodotoxin resistance in garter snakes: an evolutionary response of predators to dangerous prey. Evolution 44(3):651–659

    PubMed  Article  Google Scholar 

  17. Brodie E Jr, Formanowicz D Jr, Brodie E III (1991) Predator avoidance and antipredator mechanisms: distinct pathways to survival. Ethol Ecol Evol 3(1):73–77

    Article  Google Scholar 

  18. Brown GP, Shine R (2014) Immune response varies with rate of dispersal in invasive cane toads (Rhinella marina). PLoS ONE 9(6):e99734

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Brown GP, Holden D, Shine R, Phillips BL (2018) Invasion history alters the behavioural consequences of immune system activation in cane toads. J Anim Ecol 87(3):716–726

    PubMed  Article  Google Scholar 

  20. Brusch GA, DeNardo DF (2017) When less means more: dehydration improves innate immunity in rattlesnakes. J Exp Biol 220(12):2287–2295

    PubMed  Article  Google Scholar 

  21. Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA (2012) Reactive oxygen species (ROS)–a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater 24(249):e65

    Google Scholar 

  22. Butler MW, Lutz TJ, Fokidis HB, Stahlschmidt ZR (2016) Eating increases oxidative damage in a reptile. J Exp Biol 219(13):1969–1973

    PubMed  Article  Google Scholar 

  23. Christian LM, Graham JE, Padgett DA, Glaser R, Kiecolt-Glaser JK (2006) Stress and wound healing. NeuroImmunoModulation 13(5–6):337–346

    CAS  PubMed  Article  Google Scholar 

  24. Costantini D (2016) Oxidative stress ecology and the d-ROMs test: facts, misfacts and an appraisal of a decade’s work. Behav Ecol Sociobiol 70(5):809–820

    Article  Google Scholar 

  25. Costantini D (2019) Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J Exp Biol 13:222

    Google Scholar 

  26. Costantini D, Dell’Omo G (2006) Effects of T-cell-mediated immune response on avian oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 145(1):137–142

    PubMed  Article  CAS  Google Scholar 

  27. Costantini D, Møller AP (2009) Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A Mol Integr Physiol 153(3):339–344

    PubMed  Article  CAS  Google Scholar 

  28. Cote J, Clobert J, Poloni LM, Haussy C, Meylan S (2010) Food deprivation modifies corticosterone-dependent behavioural shifts in the common lizard. Gen Comp Endocrinol 166(1):142–151

    CAS  PubMed  Article  Google Scholar 

  29. Deen CM, Hutchison VH (2001) Effects of lipopolysaccharide and acclimation temperature on induced behavioral fever in juvenile Iguana iguana. J Therm Biol 26(1):55–63

    CAS  PubMed  Article  Google Scholar 

  30. Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80(4):710–730

    PubMed  Article  Google Scholar 

  31. Demas G, Greives T, Chester E, French S (2012) The energetics of immunity. Ecoimmunology 1:259–296

    Google Scholar 

  32. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc B Biol Sci 276(1663):1737–1745

    CAS  Article  Google Scholar 

  33. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 14(1):89–96

    PubMed  Article  Google Scholar 

  34. Durso AM, French SS (2017) Stable isotope tracers reveal a trade-off between reproduction and immunity in a reptile with competing needs. Funct Ecol 32:648–656. https://doi.org/10.1111/1365-2435.13002

    Article  Google Scholar 

  35. Enoch S, Leaper DJ (2008) Basic science of wound healing. Surgery 26(2):31–37

    Google Scholar 

  36. Fargallo JA, Laaksonen T, Pöyri V, Korpimäki E (2002) Inter-sexual differences in the immune response of Eurasian kestrel nestlings under food shortage. Ecol Lett 5(1):95–101

    Article  Google Scholar 

  37. Farley CT (1997) Maximum speed and mechanical power output in lizards. J Exp Biol 200(16):2189–2195

    CAS  PubMed  Google Scholar 

  38. Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8(1):1

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Forster J, Morris AS, Shearer JD, Mastrofrancesco B, Inman KC, Lawler RG, Bowen W, Caldwell MD (1989) Glucose uptake and flux through phosphofructokinase in wounded rat skeletal muscle. Am J Physiol Endocrinol Metab 256(6):E788–E797

    CAS  Article  Google Scholar 

  40. Foster KL, Collins CE, Higham TE, Garland T Jr (2015) Determinants of lizard escape performance: decision, motivation, ability, and opportunity. Escaping from predators: an integrative view of escape decisions. Cambridge University Press, Cambridge, pp 287–321

    Google Scholar 

  41. Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S (2012) Package ‘car.’ R Foundation for Statistical Computing, Vienna

    Google Scholar 

  42. French SS, Matt KS, Moore MC (2006) The effects of stress on wound healing in male tree lizards (Urosaurus ornatus). Gen Comp Endocrinol 145(2):128–132

    CAS  PubMed  Article  Google Scholar 

  43. French S, Johnston G, Moore M (2007a) Immune activity suppresses reproduction in food-limited female tree lizards Urosaurus ornatus. Funct Ecol 21(6):1115–1122

    Article  Google Scholar 

  44. French SS, McLemore R, Vernon B, Johnston GI, Moore MC (2007b) Corticosterone modulation of reproductive and immune systems trade-offs in female tree lizards: long-term corticosterone manipulations via injectable gelling material. J Exp Biol 210(16):2859–2865

    CAS  PubMed  Article  Google Scholar 

  45. French SS, Moore MC, Demas GE (2009) Ecological immunology: the organism in context. Integr Comp Biol 49(3):246–253

    CAS  PubMed  Article  Google Scholar 

  46. Gao X, Kim HK, Chung JM, Chung K (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131(3):262–271

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Garland T Jr (1984) Physiological correlates of locomotory performance in a lizard: an allometric approach. Am J Physiol Regul Integr Compar Physiol 247(5):R806–R815

    CAS  Article  Google Scholar 

  48. Garland T Jr, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainwright P, Reilly S (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 240–302

    Google Scholar 

  49. Gigliuto C, De Gregori M, Malafoglia V, Raffaeli W, Compagnone C, Visai L, Petrini P, Avanzini MA, Muscoli C, Viganò J (2014) Pain assessment in animal models: do we need further studies? J Pain Res 7:227

    PubMed  PubMed Central  Google Scholar 

  50. Gleeson TT, Harrison J (1988) Muscle composition and its relation to sprint running in the lizard Dipsosaurus dorsalis. Am J Physiol Regul Integr Compar Physiol 255(3):R470–R477

    CAS  Article  Google Scholar 

  51. Goldberg SR, Bursey CR (1991) Integumental lesions caused by ectoparasites in a wild population of the side-blotched lizard (Uta stansburiana). J Wildl Dis 27(1):68–73

    CAS  PubMed  Article  Google Scholar 

  52. Goller M, Goller F, French SS (2014) A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol Evol 4(17):3319–3329

    PubMed  PubMed Central  Article  Google Scholar 

  53. Graham AL, Shuker DM, Pollitt LC, Auld SK, Wilson AJ, Little TJ (2011) Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct Ecol 25(1):5–17

    Article  Google Scholar 

  54. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA (2013) An overview of animal models of pain: disease models and outcome measures. J Pain 14(11):1255–1269

    PubMed  Article  Google Scholar 

  55. Grether GF, Anderson CN, Drury JP, Kirschel AN, Losin N, Okamoto K, Peiman KS (2013) The evolutionary consequences of interspecific aggression. Ann N Y Acad Sci 1289(1):48–68

    PubMed  Article  Google Scholar 

  56. Halliwell B, Gutteridge JM (2015) Free Radicals in Biology and Medicine. Oxford University Press, Oxford

    Google Scholar 

  57. Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2004) Costs of immunity: immune responsiveness reduces survival in a vertebrate. Proc R Soc Lond B 271(1542):925–930

    Article  Google Scholar 

  58. Hart BL, Hart LA (2019) Sickness behavior in animals: implications for health and wellness. In: Choe JC (ed) Encyclopedia of animal behavior. Elsevier Science & Technology, San Diego, pp 171–175

    Google Scholar 

  59. Hasselquist D, Nilsson J-Å (2012) Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim Behav 83(6):1303–1312

    Article  Google Scholar 

  60. Hübner G, Brauchle M, Smola H, Madlener M, Fässler R, Werner S (1996) Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8(7):548–556

    PubMed  Article  Google Scholar 

  61. Huey RB, Hertz PE (1982) Effects of body size and slope on sprint speed of a lizard (Stellio (Agama) stellio). J Exp Biol 97(1):401–409

    Google Scholar 

  62. Huey RB, Pianka ER (1981) Ecological consequences of foraging mode. Ecology 62(4):991–999

    Article  Google Scholar 

  63. Huey RB, Pianka ER, Vitt LJ (2001) How often do lizards “run on empty”? Ecology 82(1):1–7

    Google Scholar 

  64. Hunt TK (1988) The physiology of wound healing. Ann Emerg Med 17(12):1265–1273

    CAS  PubMed  Article  Google Scholar 

  65. Husak JF (2006a) Does speed help you survive? A test with collared lizards of different ages. Funct Ecol 20(1):174–179

    Article  Google Scholar 

  66. Husak JF (2006b) Does survival depend on how fast you can run or how fast you do run? Funct Ecol 20(6):1080–1086

    Article  Google Scholar 

  67. Husak JF, Lailvaux SP (2017) How do we measure the cost of whole-organism performance traits? Integr Comp Biol 57(2):333–343

    PubMed  Article  Google Scholar 

  68. Husak JF, Ferguson HA, Lovern MB (2016) Trade-offs among locomotor performance, reproduction and immunity in lizards. Funct Ecol 30(10):1665–1674

    Article  Google Scholar 

  69. Husak JF, Roy JC, Lovern MB (2017) Exercise training reveals trade-offs between endurance performance and immune function, but does not influence growth, in juvenile lizards. J Exp Biol 220(8):1497–1502

    PubMed  Article  Google Scholar 

  70. Huyghe K, Husak JF, Moore IT, Vanhooydonck B, Van Damme R, Molina-Borja M, Herrel A (2010) Effects of testosterone on morphology, performance and muscle mass in a lizard. J Exp Zool Part A Ecol Genet Physiol 313(1):9–16

    Article  CAS  Google Scholar 

  71. Iglesias-Carrasco M, Head ML, Cabido C (2016) Habitat dependent effects of experimental immune challenge on lizard anti-predator responses. Behav Ecol Sociobiol 70(11):1931–1939

    Article  Google Scholar 

  72. Im MJ, Hoopes JE (1970) Energy metabolism in healing skin wounds. J Surg Res 10(10):459–464

    CAS  PubMed  Article  Google Scholar 

  73. Irschick DJ, Garland T Jr (2001) Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu Rev Ecol Syst 32(1):367–396

    Article  Google Scholar 

  74. Irschick DJ, Losos JB (1998) A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52(1):219–226

    PubMed  Article  Google Scholar 

  75. Irschick DJ, Meyers JJ, Husak JF, Le Galliard J-F (2008) How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res 10(2):177–196

    Google Scholar 

  76. Isaksson C, Sheldon BC, Uller T (2011) The challenges of integrating oxidative stress into life-history biology. Bioscience 61(3):194–202

    Article  Google Scholar 

  77. Ison SH, Clutton RE, Di Giminiani P, Rutherford K (2016) A review of pain assessment in pigs. Front Vet Sci 3:108

    PubMed  PubMed Central  Article  Google Scholar 

  78. Johnson RW (2002) The concept of sickness behavior: a brief chronological account of four key discoveries. Vet Immunol Immunopathol 87(3–4):443–450

    CAS  PubMed  Article  Google Scholar 

  79. Kendall AC, Nicolaou A (2013) Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 52(1):141–164

    CAS  PubMed  Article  Google Scholar 

  80. Klasing C (2004) The costs of immunity. Acta Zoologica Sinica 50(6):961–969

    CAS  Google Scholar 

  81. Klinck MP, Mogil JS, Moreau M, Lascelles BDX, Flecknell PA, Poitte T, Troncy E (2017) Translational pain assessment: could natural animal models be the missing link? Pain 158(9):1633–1646

    PubMed  Article  Google Scholar 

  82. Kurahashi T, Fujii J (2015) Roles of antioxidative enzymes in wound healing. J Dev Biol 3(2):57–70

    CAS  Article  Google Scholar 

  83. Lailvaux SP, Husak JF (2014) The life history of whole-organism performance. Q Rev Biol 89(4):285–318

    PubMed  Article  Google Scholar 

  84. Lailvaux SP, Husak JF (2017) Predicting life-history trade-offs with whole-organism performance. Integr Comp Biol 57(2):325–332

    PubMed  Article  Google Scholar 

  85. Lailvaux SP, Gilbert RL, Edwards JR (2012) A performance-based cost to honest signalling in male green anole lizards (Anolis carolinensis). Proc R Soc B Biol Sci 279(1739):2841–2848

    Article  Google Scholar 

  86. Lailvaux SP, Wang AZ, Husak JF (2018) Energetic costs of performance in trained and untrained Anolis carolinensis lizards. J Exp Biol 221(8):jeb176867

    PubMed  Article  Google Scholar 

  87. Lailvaux SP, Cespedes AM, Weber WD, Husak JF (2020) Sprint speed is unaffected by dietary manipulation in trained male Anolis carolinensis lizards. J Exp Zool Part A Ecol Integr Physiol 333(3):164–170

    Google Scholar 

  88. Le Galliard J-F, Clobert J, Ferrière R (2004) Physical performance and Darwinian fitness in lizards. Nature 432(7016):502

    PubMed  Article  CAS  Google Scholar 

  89. Le Galliard JF, Paquet M, Cisel M, Montes-Poloni L (2013) Personality and the pace-of-life syndrome: variation and selection on exploration, metabolism and locomotor performances. Funct Ecol 27(1):136–144

    Article  Google Scholar 

  90. Llewellyn D, Brown G, Thompson M, Shine R (2011) Behavioral responses to immune-system activation in an anuran (the cane toad, Bufo marinus): field and laboratory studies. Physiol Biochem Zool 84(1):77–86

    CAS  PubMed  Article  Google Scholar 

  91. Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88(1):87–98

    Article  Google Scholar 

  92. Losos JB, Creer DA, Schulte Ii JA (2002) Cautionary comments on the measurement of maximum locomotor capabilities. J Zool 258(1):57–61

    Article  Google Scholar 

  93. Lucas LD, French SS (2012) Stress-induced tradeoffs in a free-living lizard across a variable landscape: consequences for individuals and populations. PLoS ONE 7(11):e49895

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Luoma RL, Butler MW, Stahlschmidt ZR (2016) Plasticity of immunity in response to eating. J Exp Biol 219(13):1965–1968

    PubMed  Article  Google Scholar 

  95. Mangiafico S (2020) rcompanion: functions to support extension education program evaluation. R package version 2.3.21

  96. Martin J (1996) Effects of recent feeding on locomotor performance of juvenile Psammodromus algirus lizards. Funct Ecol 10:390–395

    Article  Google Scholar 

  97. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276(5309):75–81

    CAS  PubMed  Article  Google Scholar 

  98. McKean KA, Lazzaro BP (2011) The costs of immunity and the evolution of immunological defense mechanisms. Oxford University Press, Oxford

    Google Scholar 

  99. Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343(5):338–344

    CAS  PubMed  Article  Google Scholar 

  100. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25(1):19–25

    PubMed  Article  Google Scholar 

  101. Metcalfe NB, Alonso-Alvarez C (2010) Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol 24(5):984–996

    Article  Google Scholar 

  102. Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6(1):63–75

    Google Scholar 

  103. Miles DB, Calsbeek R, Sinervo B (2007) Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Horm Behav 51(4):548–554

    CAS  PubMed  Article  Google Scholar 

  104. Moeller KT, Butler MW, DeNardo DF (2013) The effect of hydration state and energy balance on innate immunity of a desert reptile. Front Zool 10(1):23

    PubMed  PubMed Central  Article  Google Scholar 

  105. Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10(4):283–294

    CAS  PubMed  Article  Google Scholar 

  106. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12(1):75–92

    PubMed  Article  Google Scholar 

  107. Moore IT, Hopkins WA (2009) Interactions and trade-offs among physiological determinants of performance and reproductive success. Integr Comp Biol 49(4):441–451

    PubMed  Article  Google Scholar 

  108. Moretti EH, Titon SCM, Junior BT, Marques FS, Gomes FR (2019) Thermal sensitivity of innate immune response in three species of Rhinella toads. Comp Biochem Physiol Part A Molec Integr Physiol 237:110542

    CAS  Article  Google Scholar 

  109. Murray M, Murray A (1979) Anorexia of infection as a mechanism of host defense. Am J Clin Nutr 32(3):593–596

    CAS  PubMed  Article  Google Scholar 

  110. Nagy KA, Huey RB, Bennett AF (1984) Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65(2):588–596

    Article  Google Scholar 

  111. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25(4):187–192

    CAS  PubMed  Article  Google Scholar 

  113. Neuman-Lee LA, French SS (2014) Wound healing reduces stress-induced immune changes: evidence for immune prioritization in the side-blotched lizard. J Comp Physiol B 184(5):623–629

    CAS  PubMed  Article  Google Scholar 

  114. Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11(1):19–26

    Article  Google Scholar 

  115. Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47(4):364–369

    CAS  PubMed  Article  Google Scholar 

  116. Pérez-Tris J, Dı́az JA, Tellerı́a JL (2004) Loss of body mass under predation risk: cost of antipredatory behaviour or adaptive fit-for-escape? Anim Behav 67(3):511–521

    Article  Google Scholar 

  117. Pettit TV, Pettit RJ, Durso AM, French SS (2019) Investment of both essential fatty and amino acids to immunity varies depending on reproductive stage. J Exp Zool Part A Ecol Integr Physiol 331(10):552–561

    CAS  Google Scholar 

  118. Pough FH (1989) Organismal performance and Darwinian fitness: approaches and interpretations. Physiol Zool 62(2):199–236

    Article  Google Scholar 

  119. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Powers SK, Radak Z, Ji LL (2016) Exercise-induced oxidative stress: past, present and future. J Physiol 594(18):5081–5092

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Puertollano M, Puertollano E, Alvarez de Cienfuegos G, de Pablo AMA (2011) Dietary antioxidants: immunity and host defense. Curr Top Med Chem 11(14):1752–1766

    CAS  PubMed  Article  Google Scholar 

  122. Roff D (1993) Evolution of Life histories: theory and analysis. Springer Science & Business Media, Berlin

    Google Scholar 

  123. Rojas I-G, Padgett DA, Sheridan JF, Marucha PT (2002) Stress-induced susceptibility to bacterial infection during cutaneous wound healing. Brain Behav Immun 16(1):74–84

    PubMed  Article  Google Scholar 

  124. Schäfer M, Werner S (2008) Oxidative stress in normal and impaired wound repair. Pharmacol Res 58(2):165–171

    PubMed  Article  CAS  Google Scholar 

  125. Schneeberger K, Czirják GÁ, Voigt CC (2013) Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J Exp Biol 216(24):4514–4519

    CAS  PubMed  Article  Google Scholar 

  126. Seebacher F (2005) A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility? J Comp Physiol B 175(7):453–461

    PubMed  Article  Google Scholar 

  127. Semlitsch RD (1990) Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can J Zool 68(5):1027–1030

    Article  Google Scholar 

  128. Sen CK (2009) Wound healing essentials: let there be oxygen. Wound Repair Regener 17(1):1–18

    Article  Google Scholar 

  129. Shaw TJ, Martin P (2009) Wound repair at a glance. J Cell Sci 122(18):3209–3213

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    CAS  PubMed  Article  Google Scholar 

  131. Sild E, Hõrak P (2010) Assessment of oxidative burst in avian whole blood samples: validation and application of a chemiluminescence method based on Pholasin. Behav Ecol Sociobiol 64(12):2065–2076

    Article  Google Scholar 

  132. Singmann H, Bolker B, Westfall J, Aust F (2015) afex: Analysis of factorial experiments. R package version 013–145

  133. Skinner HM, Durso AM, Neuman-Lee LA, Durham SL, Mueller SD, French SS (2016) Effects of diet restriction and diet complexity on life history strategies in side-blotched lizards (Uta stansburiana). J Exp Zool Part A Ecol Genet Physiol 325(9):626–637

    CAS  Article  Google Scholar 

  134. Smith GD, Neuman-Lee LA, Webb AC, Angilletta MJ, DeNardo DF, French SS (2017) Metabolic responses to different immune challenges and varying resource availability in the side-blotched lizard (Uta stansburiana). J Comp Physiol B 187(8):1173–1182

    CAS  PubMed  Article  Google Scholar 

  135. Smith GD, Zani PA, French SS (2019) Life-history differences across latitude in common side-blotched lizards (Uta stansburiana). Ecol Evol 9(10):5743–5751

    PubMed  PubMed Central  Article  Google Scholar 

  136. Soneja A, Drews M, Malinski T (2005) Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep 57:108

    PubMed  Google Scholar 

  137. Speakman JR, Garratt M (2014) Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. BioEssays 36(1):93–106

    PubMed  Article  Google Scholar 

  138. Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TB, Monaghan P, Ozanne SE, Beaulieu M, Briga M (2015) Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol 5(24):5745–5757

    PubMed  PubMed Central  Article  Google Scholar 

  139. Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3(3):259–268

    Article  Google Scholar 

  140. Svensson E, Råberg L, Koch C, Hasselquist D (1998) Energetic stress, immunosuppression and the costs of an antibody response. Funct Ecol 12(6):912–919

    Article  Google Scholar 

  141. Team RC (2018) R: a language and environment for statistical computing. Version 3.5. 1. Vienna, Austria. R Foundation for Statistical Computing

  142. Tobler M, Ballen C, Healey M, Wilson M, Olsson M (2015) Oxidant trade-offs in immunity: an experimental test in a lizard. PLoS ONE 10(5):e0126155

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215(5):774–784

    PubMed  Article  Google Scholar 

  144. van de Crommenacker J, Horrocks NP, Versteegh MA, Komdeur J, Tieleman BI, Matson KD (2010) Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird: implications for ecologists. J Exp Biol 213(20):3527–3535

    PubMed  Article  CAS  Google Scholar 

  145. Vanhooydonck B, Van Damme R, Aerts P (2001) Speed and stamina trade-off in lacertid lizards. Evolution 55(5):1040–1048

    CAS  PubMed  Article  Google Scholar 

  146. Vassalle C (2008) An easy and reliable automated method to estimate oxidative stress in the clinical setting. Methods Mol Biol 477:31–39

    CAS  PubMed  Article  Google Scholar 

  147. Vassalle C, Masini S, Carpeggiani C, L’Abbate A, Boni C, CarloZucchelli G (2004) In vivo total antioxidant capacity: comparison of two different analytical methods. Clin Chem Lab Med (CCLM) 42(1):84–89

    CAS  Article  Google Scholar 

  148. Vassalle C, Pratali L, Boni C, Mercuri A, Ndreu R (2008) An oxidative stress score as a combined measure of the pro-oxidant and anti-oxidant counterparts in patients with coronary artery disease. Clin Biochem 41(14–15):1162–1167

    CAS  PubMed  Article  Google Scholar 

  149. Vervust B, Van Dongen S, Grbac I, Van Damme R (2009) The mystery of the missing toes: extreme levels of natural mutilation in island lizard populations. Funct Ecol 23(5):996–1003

    Article  Google Scholar 

  150. Viney ME, Riley EM, Buchanan KL (2005) Optimal immune responses: immunocompetence revisited. Trends Ecol Evol 20(12):665–669

    PubMed  Article  Google Scholar 

  151. Vitt LJ (1983) Tail loss in lizards: the significance of foraging and predator escape modes. Herpetologica 39:151–162

    Google Scholar 

  152. Waldschmidt S, Tracy CR (1983) Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64(3):476–484

    Article  Google Scholar 

  153. Wang AZ, Husak JF (2020) Endurance and sprint training affect immune function differently in green anole lizards (Anolis carolinensis). J Exp Biol 223(20):jeb232132

    PubMed  Article  Google Scholar 

  154. Wang AZ, Husak JF, Lovern M (2019) Leptin ameliorates the immunity, but not reproduction, trade-off with endurance in lizards. J Comp Physiol B 189(2):261–269

    CAS  PubMed  Article  Google Scholar 

  155. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    CAS  PubMed  Article  Google Scholar 

  156. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11(6):389

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. West G, Heard DJ, Caulkett N (2014) Zoo animal and wildlife immobilization and anesthesia. John Wiley & Sons, Hoboken

    Google Scholar 

  158. White TC (1978) The importance of a relative shortage of food in animal ecology. Oecologia 33(1):71–86

    CAS  PubMed  Article  Google Scholar 

  159. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21(12):1–20

    Article  Google Scholar 

  160. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, Berlin

    Google Scholar 

  161. Wilke CO (2016) cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. CRAN Repos

  162. Wilson BS (1992) Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana). Oecologia 92(1):145–152

    PubMed  Article  Google Scholar 

  163. Wobeser GA (2013) Essentials of disease in wild animals. John Wiley & Sons, Hoboken

    Google Scholar 

  164. Zamora-Camacho FJ (2018) Integrating time progression in ecoimmunology studies: beyond immune response intensity. Curr Zool 65(2):205–212

    PubMed  PubMed Central  Article  Google Scholar 

  165. Zamora-Camacho FJ, Reguera S, Rubiño-Hispán MV, Moreno-Rueda G (2014) Eliciting an immune response reduces sprint speed in a lizard. Behav Ecol 26(1):115–120

    Article  Google Scholar 

  166. Zamora-Camacho FJ, Reguera S, Moreno-Rueda G (2016) Elevational variation in body-temperature response to immune challenge in a lizard. PeerJ 4:e1972

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  167. Zamora-Camacho FJ, Comas M, Moreno-Rueda G (2020) Immune challenge does not impair short-distance escape speed in a newt. Anim Behav 167:101–109

    Article  Google Scholar 

  168. Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32(1):95–126

    Article  Google Scholar 

  169. Zimmerman L, Vogel L, Bowden R (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213(5):661–671

    CAS  PubMed  Article  Google Scholar 

  170. Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160(S4):S9–S22

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

Andrew Durso, Marilize Van der Walt and Holly Flann were instrumental to lizard-catching and blood sample collection. Holly Flann, Justine Lamm, and Fallon Moore facilitated quality animal husbandry and data collection in the laboratory. Eleanor Watson analyzed wound photographs. Geoffrey Smith and Megen Kepas provided constructive feedback on early versions of the manuscript.

Funding

The National Science Foundation (IOS)-1350070 and the Utah State University Ecology Center provided support with lab expenses and travel funding.

Author information

Affiliations

Authors

Contributions

SBH, EDB, and SSF conceived the ideas and designed methodology; SBH and EEV collected and assayed the samples; SBH led the data analyses and writing of the manuscript; All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Spencer B. Hudson.

Ethics declarations

Conflict of interest

There are no competing interests among those involved with this experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by K.H. Dausmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hudson, S.B., Virgin, E.E., Brodie, E.D. et al. Recovery from discrete wound severities in side-blotched lizards (Uta stansburiana): implications for energy budget, locomotor performance, and oxidative stress. J Comp Physiol B (2021). https://doi.org/10.1007/s00360-021-01347-z

Download citation

Keywords

  • Antioxidant capacity
  • Body mass loss
  • Food intake
  • Oxidative index
  • Reactive oxygen metabolites
  • Sprint speed
  • Wound healing