Gut reaction! Neotropical nectar-feeding bats responses to direct and indirect costs of extreme environmental temperatures

Abstract

One of the consequences of anthropogenic climate change is an increase in the frequency and intensity of extreme weather events. These events have caused mass mortality of different species of wildlife, including bats. In this study, we exposed two species of neotropical nectar-feeding bats that live in contrasting environmental conditions (A. geoffroyi and L. yerbabuenae) to extreme high and low temperatures while offering them diets with different energy content. This experimental approach allowed us to determine their thermal and behavioral responses, and to identify environmental conditions that impose high physiologic costs to these species. To determine how bats' responded, we monitored both changes in their body masses and skin temperatures. Both bat species responded differently, with L. yerbabuenae spending more time in normothermia at high temperatures than A. geoffroyi. While both species presented torpor, they used it differently. Torpor allowed A. geoffroyi to maintain and increase body mass at intermediate and low ambient temperatures. At the same time, L. yerbabuenae used torpor only when facing cold ambient temperatures and low-quality food. Understanding the mechanisms that allow species to face changes in their environment is essential given the current climate trends and the fact that the loss of these species could have significant negative consequences in tropical and subtropical ecosystems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

T skin :

Skin temperature

F iw :

Feeder initial weight

F fw :

Feeder final weight

B im :

Bat initial mass

B fm :

Bat final mass

Bm :

Change in bat mass

References

  1. Arita HT (2005) Leptonycteris curasoae. In: Ceballos G, Oliva G (eds) Los mamíferos silvestres de México. Fondo de Cultura Económica, México, pp 121–122

    Google Scholar 

  2. Arita HT (1991) Spatial segregation in long-nosed bats, Leptonycteris nivalis and Leptonycteris curasoae, in Mexico. J Mammal 72:706–714

    Article  Google Scholar 

  3. Arita HT, Humphrey SR (1988) Revisión taxonómica de los murciélagos magueyeros del genero Leptonycteris (Chiroptera:Phyllostomidae). Acta Zool Mex 29:1–60

    Google Scholar 

  4. Audet D, Thomas DW (1996) Evaluation of the accuracy of body temperature measurement using external radio transmitters. Can J Zool 74:1778–1781

    Article  Google Scholar 

  5. Ayala-Berdon J, Vázquez-Fuerte R, Beamonte-Barrientos R, Schondube JE (2017) Effect of diet quality and ambient temperature on the use of torpor by two species of neotropical nectar-feeding bats. J Exp Biol 220:920–929. https://doi.org/10.1242/jeb.142422

    Article  PubMed  Google Scholar 

  6. Ayala-Berdon J, Galicia R, Flores-Ortiz C, Medellín RA, Schondube JE (2013) Digestive capacities allow the Mexican long-nosed bat (Leptonycteris nivalis) to live in cold environments. Comp Biochem Physiol A 164:622–628. https://doi.org/10.1016/j.cbpa.2013.01.015

    CAS  Article  Google Scholar 

  7. Ayala-Berdon J, Rodríguez-Peña N, Orduña-Villaseñor M, Stoner KE, Kelm DH, Schondube JE (2011) Foraging behaviour adjustments related to changes in nectar sugar concentration in phyllostomid bats. Comp Biochem Physiol A 160:143–148

    CAS  Article  Google Scholar 

  8. Ayala-Berdon J, Schondube JE (2011) A physiological perspective on nectar-feeding adaptation in phyllostomid bats. Physiol Biochem Zool 84(5):458–466. https://doi.org/10.1086/661541

    Article  PubMed  Google Scholar 

  9. Ayala-Berdon J, Schondube JE, Stoner KE (2009) Seasonal intake responses in the nectar-feeding bat Glossophaga soricina. J Comp Physiol B 179:553–562

    Article  Google Scholar 

  10. Ayala-Berdon J, Schondube JE, Stoner KE, Rodriguez-Peña N, Martínez Del Rio C (2008) The intake responses of three species of leaf-nosed Neotropical bats. J Comp Physiol B 178:477–485

    CAS  Article  Google Scholar 

  11. Barclay RM, Kalcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson L, Brigham RM (1996) Can external radiotransmitters be used to assess body temperature and torpor in bats? J Mammal 77(4):1102–1106

    Article  Google Scholar 

  12. Bennett AF (1987) The accomplishments of ecological physiology. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology, Cambridge University Press, pp 1–8

  13. Bondarenco A, Körtner G, Geiser F (2014) Hot bats: extreme thermal tolerance in a desert heat wave. Naturwissenschaften 101:679–685

    CAS  Article  Google Scholar 

  14. Boyles J (2019) A brief introduction to methods for describing body temperature in Endotherms. Physiol Biochem Zool 92(4):365–372. https://doi.org/10.1086/703420

    Article  PubMed  Google Scholar 

  15. Bozinovic F, Ferri-Yáñez F, Naya H, Araújo MB, Naya DE (2014) Thermal tolerances in rodents: species that evolved in cold climates exhibit a wider thermoneutral zone. Evol Ecol Res 16:143–152

    Google Scholar 

  16. Buck LC, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an artic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262

    CAS  Article  Google Scholar 

  17. Carroll JM, Davis CA, Elmore RD, Fuhlendorf SD, Thacker ET (2015) Thermal patterns constrains diurnal behavior of a ground-dwelling bird. Ecosphere 6(11):222. https://doi.org/10.1890/ES15-00163.1

    Article  Google Scholar 

  18. Chalcoff VR, Aizen MA, Galetto L (2006) Nectar concentration and composition of 26 species from the temperate forest of South America. Ann Bot 97:413–421

    Article  Google Scholar 

  19. Chu C, Kleinhesselink AR, Havstad KM, McClaran MP, Peters DP, Vermeire LT, Wei H, Adler PB (2016) Direct effects dominate responses to climate perturbations in grassland plant communities. Nat Commun 7:11766. https://doi.org/10.1038/ncomms11766 (2016/06/08/online)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Cruzblanca-Castro M, Martínez-Gómez M, Ayala-Berdon J (2018) Food processing does not affect energy intake in the nectar-feeding bat Anoura geoffroyi. Mamm Biol 88:176–179. https://doi.org/10.1016/j.mambio.2017.10.008

    Article  Google Scholar 

  21. Cruz-Neto AP, Abe AS (1997) Metabolic rate and thermoregulation in the nectarivorous bat, Glossophaga soricina (Chiroptera, Phyllostomatidae). Rev Bras Biol 57:203–209

    Google Scholar 

  22. Dar S, del Arizmendi MC, Valiente-Banuet A (2006) Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae:Cactaceae) in central Mexico. Ann Bot 97:423–427. https://doi.org/10.1093/aob/mcj045

    Article  PubMed  PubMed Central  Google Scholar 

  23. Díaz-Valenzuela R, Ortíz-Pulido R (2011) Effects of a snowstorm event on the interactions between plants and hummingbirds: fast recovery of spatio-temporal patterns. Rev Mex Biodivers 82:1243–1246

    Google Scholar 

  24. du Plessis KL, Martin RO, Hockey PAR, Cunningham SJ, Ridley AR (2012) The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob Change Biol 18(10):3063–3070. https://doi.org/10.1111/j.1365-2486.2012.02778.x

    Article  Google Scholar 

  25. Easterling DR, Meehl GA, Parmesan CS, Changnon A, Karl TR, Mearns O (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074. https://doi.org/10.1126/science.289.5487.2068

    CAS  Article  PubMed  Google Scholar 

  26. Ebensperger LA, Ramírez-Otarola N, León C, Ortiz ME, Croxatto HB (2010) Early fitness consequences and hormonal correlates of parental behaviour in the social rodent, Octodon degus. Physiol Behav 101:509–517. https://doi.org/10.1016/j.physbeh.2010.07.017

    CAS  Article  PubMed  Google Scholar 

  27. Eisenberg JF (1989) Mammals of the Neotropics. Volumen 1. The Northern Neotropics. Chicago and Londres, The University of Chicago Press

  28. Eisenberg JF, Redford KH (1999) Mammals of the Neotropics. Volumen 3. The central Neotropics, Chicago and Londres, The University of Chicago Press

  29. Espinosa Avila LA (2008) Análisis de los nichos ecológicos estacionales de murciélagos. Dissertation, Universidad Nacional Autónoma de México

  30. Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change 5:560–564. https://doi.org/10.1038/nclimate2617

    Article  Google Scholar 

  31. Fleming PA, Gray DA, Nicolson SW (2004) Circadian rhythm of water balance and aldosterone excretion in the whitebellied sunbird Nectarinia talatala. J Comp Physiol B 174:341–346

    CAS  Article  Google Scholar 

  32. Franklin J, Serra-Diaz JM, Syphard AD, Regan HM (2016) Global change and terrestrial plant community dynamics. PNAS 113(14):3725–3734. https://doi.org/10.1073/pnas.1519911113

    CAS  Article  PubMed  Google Scholar 

  33. Fraser MW, Kendrick GA, Statton J, Hovey RK, Zavala-Perez A, Walker DI (2014) Extreme climate events lower resilence of fundation seagrass at edge of biogeographical range. J Ecol 102:1528–1536. https://doi.org/10.1111/1365-2745.12300

    Article  Google Scholar 

  34. Gardner AL (2007) Mammals of South America. Vol. 1 Marsupials, Xenarthrans, Shrews, and Bats. Chicago and London: The University of Chicago Press

  35. Gardner JL, Rowley E, de Rebeira P, de Rebeira A, Brouwer L (2017) Effects of extreme weather on two sympatric Australian passerine bird species. Trans R Soc Lond C 372:20160148. https://doi.org/10.1098/rstb.2016.01.0148

    Article  Google Scholar 

  36. Graham GL (1983) Changes in bat species diversity along an elevational gradient up the Peruvian Andes. J Mammal 64:559–571

    Article  Google Scholar 

  37. Grant PR (2017) Evolution, climate change, and extreme events. Science 357(6350):451–452. https://doi.org/10.1126/science.aao2067

    CAS  Article  PubMed  Google Scholar 

  38. Gray SB, Brady MS (2016) Plant developmental responses to climate change. Dev Biol 419(1):64–77. https://doi.org/10.1016/j.ydbio.2016.07.023

    CAS  Article  PubMed  Google Scholar 

  39. Hall L, Richards G (2000) Flying foxes: fruit and blossom bats of Australia. Krieger Publishing Company, Malabar, Florida, USA

  40. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem Part A 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  41. Hawkins BA, Thomson JR, Mac NR (2018) Regional patterns of nectar availability in subtropical eastern Australia. Landscape Ecol 33:999–1012. https://doi.org/10.1007/s10980-018-0647-7

    Article  Google Scholar 

  42. Herring SC, Hoerling MP, Kossin JP, Peterson TC, Stott PA (2015) Explaining extreme events of 2014 from a climate perspective. Special Supplement to the Bulletin of the American Meteorological Society, 96(12)

  43. Hill RW, Wyse GA, Anderson M (2012) Animal Physiology. Sinauer Associates, Incorporated Publishers, USA

  44. Huey RB, Bennett AF (1990) Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In: Morimoto RI, Tissieres A, Georgopoulus C (eds) Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, pp 37–59

  45. IPCC (2014) Cambio climático 2014 Informe de Síntesis. Resumen para responsables de políticas. Available at https://www.ipcc.ch/pdf/assessment-eport/ar5/syr/AR5_SYR_FINAL_SPM_es.pdf. Accessed 15 Feb 2018

  46. Jamieson MA, Burkle LA, Manson JS, Runyon JB, Trowbridge AM, Zientek J (2017) Global change effects on plant-insect interactions: the role of phytochemistry. Curr Opin Insect Sci 23:70–80. https://doi.org/10.1016/j.cois.2017.07.009

    Article  PubMed  Google Scholar 

  47. Jones Jr JK, Bleier WJ (1974) Sanborn’s long-tongued bat Leptonycteris curasoae in El Salvador. Mammalia 38:144–145

    Google Scholar 

  48. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  49. Kelm DH, von Helversen O (2007) How to budget metabolic energy: torpor in a small Neotropical mammal. J Comp Physiol B 177:667–677. https://doi.org/10.1007/s00360-007-0164-5

    Article  PubMed  Google Scholar 

  50. Lee TE, Bradley RD (1992) New distribution records of some mammals from Honduras. Tex J Sci 44:109–111

    Google Scholar 

  51. Licht P, Leitner P (1967) Physiological responses to high environmental temperatures in three species of microchiropteran bats. Comp Biochem Physiol 22:371–387

    Article  Google Scholar 

  52. Lotz CN, Nicolson SW (1999) Energy and water balance in the lesser double-collared sunbird (Nectarinbia chalyea) feeding on different nectar concentrations. J Comp Physiol B 169:200–206

    Article  Google Scholar 

  53. Martínez Del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am Zool 41:902–915

    Google Scholar 

  54. Mao F (2019) How one heatwave killed ‘a third’ of a bat species in Australia. BBC News 15 January 2019. Available at: https://www.bbc.com/news/world-australia-46859000. Accessed 19 may 2019.

  55. Mason THE, Brivio F, Stephens PA, Apollonio M, Grinolio S (2017) The behavioral trade-off between thermoregulation and foraging in a heat-sensitive species. Behav Ecol 28(3):908–918. https://doi.org/10.1093/beheco/arx057

    Article  Google Scholar 

  56. Mendieta-Pluma J (2011) Recursos florales de interés alimenticio en dos especies de murciélagos Glossophaginae. Dissertation, Universidad Autónoma de Tlaxcala

  57. McKechnie AE, Wolf BO (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett 6(2):253–256. https://doi.org/10.1098/rsbl.2009.0702

    Article  PubMed  Google Scholar 

  58. McNab BK (1976) Seasonal fat reserves of bats in two tropical environments. Ecology 57:332–338

    Article  Google Scholar 

  59. McWhorter TJ, Martínez Del Rio C (2000) Does gut function limit hummingbird food intake? Physiol Biochem Zool 73:313–324

    CAS  Article  Google Scholar 

  60. Neuweiler G (2000) The biology of bats. Oxford University Press, New York Oxford, pp 63–94

    Google Scholar 

  61. Ortega J, Arita HT (2005) Anoura geoffroyi. In: Ceballos G, Oliva G (eds) Los mamíferos silvestres de México. Fondo de Cultura Económica, México, p 211

    Google Scholar 

  62. Ortega-García S, Guevara L, Arroyo-Cabrales J, Lindig-Cisneros R, Martínez-Meyer E, Vega E, Schondube JE (2017) The thermal niche of Neotropical nectar-feeding bats: its evolution and application to predict responses to global warming. Ecol Evol 7:6691–6701. https://doi.org/10.1002/ece3.3171

    Article  PubMed  PubMed Central  Google Scholar 

  63. Parmesan C, Yohe G (2003) A globally coherent finger-print of climate change impacts across natural systems. Nature 421:37–42

    CAS  Article  Google Scholar 

  64. Pounds AJ, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    CAS  Article  Google Scholar 

  65. Powell MS, Owen G, Bradley RD (1993) Northworty records of bats from Honduras. Tex J Sci 45:179–182

    Google Scholar 

  66. Qureshi I (2015) Indians wilt under heatwave in Telangana state. BBC News 25 May 2015. Available at: https://www.bbc.com/news/world-asia-india-32876148. Accessed 30 January 2018.

  67. Reid F (2009) A field guide to the mammals of Central America and Southeast Mexico, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  68. Rodríguez-Peña N, Stoner KE, Schondube JE, Ayala-Berdon J, Flores-Ortiz CM, Martínez Del Rio C (2007) Effects of sugar composition and concentration on food selection by Saussure’s long-nosed bat (Leptonycteris curasoae) and the Long-tongued bat (Glossophaga soricina). J Mammal 88(6):1466–1474. https://doi.org/10.1644/06-MAMM-A-353R1.1

    Article  Google Scholar 

  69. Rojas-Martínez A, Valiente-Banuet M, Arizmendi C, Alcántara-Eguren A, Arita H (1999) Seasonal distribution of the long-nosed bat (Leptonycteris curasoae) in North America: does a generalized migration pattern really exist? J Biogeogr 26:1065–1077

    Article  Google Scholar 

  70. Russell C, Wilson DE (2006) Leptonycteris yerbabuenae Mamm. Species 797:1–7. https://doi.org/10.1644/796.1

    Article  Google Scholar 

  71. Saunders L (2014) Extreme heat event devastates Qld native Flying-fox colonies. Media Release 26 January, Bat Conservation and Rescue Qld, Inc. Available at https://bats.org.au/uploads/newsevents/media/press-releases/Heatdisastermr6012014.pdf. Accessed 30 January 2018.

  72. Scaven VL, Raferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59(3):418–426. https://doi.org/10.1093/czoolo/59.3.418

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment, fifth edition. Cambridge University Press, Cambridge, pp 217–238

    Google Scholar 

  74. Schondube JE, Herrera-M LG, Martínez del Rio C (2001) Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104(1):59–73. https://doi.org/10.1078/0944-2006-00007

    CAS  Article  PubMed  Google Scholar 

  75. Sherwin HA, Montgomery I, Lundy MG (2013) The impact and implications of climate change for bats. Mammal Rev 43:171–182. https://doi.org/10.1111/j.1365-2907.2012.00214.x

    Article  Google Scholar 

  76. Smith B, McKechnie AE (2010) Do owls use torpor? Winter thermoregulation in free-ranging pearl-spotted owlets and African scops-owls. Physiol Biochem Zool 83(1):149–156

    Article  Google Scholar 

  77. Stawski C, Geiser F (2010) Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 97:29–35. https://doi.org/10.1007/s00114-009-0606-x

    CAS  Article  PubMed  Google Scholar 

  78. Stewart KM, Bowyer RT, Dick BL, Johnson BK, Kie JG (2005) Density-dependent effects on physical condition and reproduction in North American elk: an experimental test. Oecologia 143:85–93. https://doi.org/10.1007/s00442-004-1785-y

    Article  PubMed  Google Scholar 

  79. Sunday JM, Bates AE, Dulvy NK (2010) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B. https://doi.org/10.1098/rspb.2010.1295

    Article  PubMed  Google Scholar 

  80. Takkis K, Tscheulin T, Tsalkatis P, Petanidou T (2015) Climate change reduces secretion in two common Mediterranean plants. AoB Plants 7:111. https://doi.org/10.1093/aobpla/plv111

    CAS  Article  Google Scholar 

  81. Téllez-Valdés O, Dávila-Aranda P (2003) Protected areas and climate change: a case study of the cacti in the Tehuacán-Cuicatlán Biosphere Reserve. México Conserv Biol 17(3):846–853

    Article  Google Scholar 

  82. Tiessen H (2011) Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific CoBimttee on Problems of the Environment (SCOPE)

  83. Valiente-Banuet A, Rojas-Martínez A, Arizmendi MC, Dávila P (1997) Pollination biology of two columnar cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico. Am J Bot 84(4):452–455

    Article  Google Scholar 

  84. Villareal AG, Freeman E (1990) Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled conditions. Bot Gaz 151:5–9. https://doi.org/10.1086/337797

    Article  Google Scholar 

  85. von Helversen O (1993) Adaptations of flowers to the pollination by glossophagine bats. In: Barthlott W, Naumann CM, Schmidt-Loske K, Schuchmann K L (eds) Animal-plant interactions in tropical environments., Bonn: Zoologisches Forschungsinstiut und Museum Alexander Koenig, pp 41–59

  86. von Helversen O, Reyer HU (1984) Nectar intake and energy expenditure in a flower visiting bat. Oecol 63:178–184

    Article  Google Scholar 

  87. von Helversen O, Winter Y (2003) Glossophagine bats and their flowers: costs and benefits for plants and pollinators. In: Kuntz T, Fenton B (eds) Bat ecology. The University of Chicago Press, United States of America, pp 346–389

  88. Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc Lond B 275:419–425. https://doi.org/10.1098/rspb.2007.1385

    Article  Google Scholar 

  89. Zar JH (1999) Biostatistical analysis. Cuarta Edición. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  90. Zhu K, Chiariello NR, Tobeck T, Fukami T, Field CB (2016) Nonlinear, interacting responses to climate limit grassland production under global change. Proc Natl Acad Sci 113(38):10589–10594. https://doi.org/10.1073/pnas.1606734113

    CAS  Article  PubMed  Google Scholar 

  91. Zimmerman FR (1937) Migration of little brown bats. J Mammal 17:363

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Justin Boyles and one anonymous referee for their very helpful comments, Jorge I. Ayala-Berdon for suggestions that helped us during the experiments. Research funds were Granted to J. E. S. by PAPIIT-UNAM (IN205413). SOG acknowledges the scholarship and financial support provided by the National Council of Science and Technology. Funding has been recevied form Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México with PAPIIT-UNAM (IN205413), Consejo Nacional de Ciencia y Tecnología with Grant 344613.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Schondube.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Noga Kronfeld-Schor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortega-García, S., Ferreyra-García, D. & Schondube, J.E. Gut reaction! Neotropical nectar-feeding bats responses to direct and indirect costs of extreme environmental temperatures. J Comp Physiol B (2020). https://doi.org/10.1007/s00360-020-01288-z

Download citation

Keywords

  • Climate change
  • Digestive capacity
  • Extreme climatic event
  • Glossophaginae
  • Thermal niche
  • Torpor