Skip to main content
Log in

Effect of temperature on the locomotor performance of species in a lizard assemblage in the Puna region of Argentina

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Locomotion is relevant to the ecology of reptiles because of its presumed influence on an organism’s Darwinian fitness. Moreover, in ectothermic species, physiological performance capacity is affected by body temperature. We analyzed two components of locomotor performance in three species of lizards, Phymaturus extrilidus, Liolaemus parvus, and Liolaemus ruibali, in the Puna environment of Argentina. First, we estimated the thermal sensitivity of locomotion by measuring sprint speed at four different body temperatures. We included two measures of sprint speed: initial velocity and long sprint for sustained runs. Based on these data, we calculated the optimal temperature for performance and the optimal performance breadth. We also estimated endurance capacity at a single temperature. Maximum sprint speed for L. parvus was greater than L. ruibali and P. extrilidus in both initial velocity and long sprint. In contrast, L. parvus exhibited lower levels of endurance than L. ruibali and P. extrilidus. However, endurance in L. ruibali exceeded that of P. extrilidus. The species differed in the optimal temperature for the initial velocity with the lowest for L. ruibali (31.8 °C) followed by P. extrilidus (33.25 °C) and then L. parvus (36.25 °C). The optimal temperature for long sprint varied between 32 and 36 °C for all species. We found that all species attained maximum performance at body temperatures commonly experienced during daily activity, which was higher than the thermal quality of the environment. We found evidence for thermal sensitivity in locomotor performance in these species. However, we also show that the broad thermal breadth of performance suggests that the lizards are capable of sustaining near optimal levels of locomotor performance at ambient temperatures that would appear to be suboptimal. Thus, this lizard assemblage is capable of coping with the highly variable climatic conditions in the Puna region of Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdala CS, Quinteros AS (2014) Los últimos 30 años de estudios de la familia de lagartijas más diversa de Argentina: Actualización taxonómica y sistemática de Liolaemidae. Cuad Herpetol 28:55–82

    Google Scholar 

  • Acosta JC, Blanco GM, Gómez Alés R, Acosta R, Piaggio Kokot L, Victorica AE, Villavicencio HJ, Fava GA (2018) Los Reptiles de San Juan. Editorial Brujas, Córdoba

    Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Angilletta MJ, Hill T, Robson MA (2002) Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus. J Therm Biol 27:199–204

    Article  Google Scholar 

  • Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361

    Article  Google Scholar 

  • Artacho P, Saravia J, Perret S, Bartheld JL, Le Galliard JF (2017) Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J Therm Biol 63:78–87

    Article  Google Scholar 

  • Beal MS, Lattanzio MS, Miles DB (2014) Differences in the thermal physiology of adult Yarrow’s spiny lizards (Sceloporus jarrovii) in relation to sex and body size. Ecol Evol 4:4220–4229

    PubMed  PubMed Central  Google Scholar 

  • Bennett AF (1990) Thermal dependence of locomotor capacity. Am J Physiol Regul Integr Comp Physiol 259:253–258

    Article  Google Scholar 

  • Bonine KE, Garland T Jr (1999) Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hind limb length. J Zool 248:255–265

    Article  Google Scholar 

  • Bonino MF, Azócar DLM, Tulli MJ, Abdala CS, Perotti MG, Cruz FB (2011) Running in cold weather: morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J Exp Zool A Ecol Gen Physiol 315:495–503

    Article  Google Scholar 

  • Bonino MF, Azócar DLM, Schulte JA, Abdala CS, Cruz FB (2015) Thermal sensitivity of cold climate lizards and the importance of distributional ranges. Zoology 118:281–290

    Article  Google Scholar 

  • Buckley LB (2010) The range implications of lizard traits in changing environments. Global Ecol Biogeogr 19:452–464

    Google Scholar 

  • Byers J, Hebets E, Podos J (2010) Female mate choice based upon male motor performance. Anim Behav 79:771–778

    Article  Google Scholar 

  • Cabezas Cartes F, Kubisch EL, Ibargüengoytía NR (2014) Consequences of volcanic ash deposition on the locomotor performance of the Phymaturus spectabilis lizard from Patagonia, Argentina. J Exp Zool A Ecol Gen Physiol 321:164–172

    Article  Google Scholar 

  • Cabrera AL (1994) Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: regiones fitogeográficas Argentinas. ACME, Buenos Aires

    Google Scholar 

  • Calsbeek R, Cox RM (2010) Experimentally assessing the relative importance of predation and competition as agents of selection. Nature 465:613–616

    Article  CAS  Google Scholar 

  • Calsbeek R, Irschick DJ (2007) The quick and the dead: correlational selection on morphology, performance, and habitat use in island lizards. Evolution 61:2493–2503

    Article  Google Scholar 

  • Chandler CR (1995) Practical considerations in the use of simultaneous inference for multiple tests. Anim Behav 49:524–527

    Article  Google Scholar 

  • Corbalán V, Debandi G (2013) Basking behaviour in two sympatric herbivorous lizards (Liolaemidae: Phymaturus) from the Payunia volcanic region of Argentina. J Nat Hist 23:56–63

    Google Scholar 

  • Crowley SR (1985) Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia 66:219–225

    Article  Google Scholar 

  • Cruz FB, Fitzgerald LA, Espinoza RE, Schulte IIJA (2005) The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: lessons from a clade of South American lizards. J Evol Biol 18:1559–1574

    Article  CAS  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672

    Article  CAS  Google Scholar 

  • Díaz Gómez JM (2009) Historical biogeography of Phymaturus (Iguania: Liolaemidae) from Andean and Patagonian South America. Zool Scr 28:1–7

    Article  Google Scholar 

  • Fernández JB, Ibargüengoytía NR (2012) Does acclimation at higher temperatures affect the locomotor performance of one of the southernmost reptiles in the world? Acta Herpetol 7:281–296

    Google Scholar 

  • Fernández JB, Smith J, Scolaro A, Ibargüengoytía NR (2011) Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J Therm Biol 36:15–22

    Article  Google Scholar 

  • Fuller PO, Higham TE, Clark AJ (2011) Posture, speed, and habitat structure: three-dimensional hindlimb kinematics of two species of padless geckos. Zoology 114:104–112

    Article  Google Scholar 

  • Gaby MJ, Besson AA, Bezzina CN, Caldwell AJ, Cosgrove S, Cree A, Hare KM (2011) Thermal dependence of locomotor performance in two cool-temperate lizards. J Comp Physiol A 197:869–875

    Article  Google Scholar 

  • Garland T Jr, Hankins E, Huey RB (1990) Locomotor capacity and social dominance in male lizards. Funct Ecol 4:243–250

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Malden

    Book  Google Scholar 

  • Gifford ME, Herrel A, Mahler DL (2008) The evolution of locomotor morphology, performance, and anti-predator behaviour among populations of Leiocephalus lizards from the Dominican Republic. Biol J Linn Soc 93:445–456

    Article  Google Scholar 

  • Gilbert AL, Miles DB (2017) Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proc R Soc B 284:20170536

    Article  Google Scholar 

  • Gómez Alés R, Acosta JC, Laspiur A (2017) Thermal biology in two syntopic lizards, Phymaturus extrilidus and Liolaemus parvus, in the Puna region of Argentina. J Therm Biol 68:73–82

    Article  Google Scholar 

  • Goodman BA, Miles DB, Schwarzkopf L (2008) Life on the rocks: habitat use drives morphological and performance evolution in lizards. Ecology 89:3462–3471

    Article  Google Scholar 

  • Hertz PE, Huey RB, Nevo E (1983) Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37:1075–1084

    Article  Google Scholar 

  • Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:1098–1115

    Article  Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    Article  CAS  Google Scholar 

  • Huey RB, Slatkin M (1976) Cost and benefits of lizard thermoregulation. Q Rev Biol 51:363–384

    Article  CAS  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Huey RB, Bennett AF, John Alder H, Nagy KA (1984) Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim Behav 32:41–50

    Article  Google Scholar 

  • Huey RB, Dunham AE, Overall KL, Newman RA (1990) Variation in locomotor performance in demographically known populations of the lizard Sceloporus merriami. Physiol Zool 63:845–872

    Article  Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, Garland T (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci 276:1939–1948

    Article  Google Scholar 

  • Husak JF, Fox SF, Lovern MB, Bussche RA (2006) Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution 60:2122–2130

    Article  CAS  Google Scholar 

  • Ibargüengoytía NR, Renner ML, Boretto JM, Piantoni C, Cussac VE (2007) Thermal effects on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphib Reptil 28:235–246

    Article  Google Scholar 

  • Ibargüengoytía NR, Cabezas Cartes F, Boretto JM, Piantoni C, Kubisch EL, Fernández MS, Lara Resendiz RA, Méndez De La Cruz FR, Scolaro A, Sinervo B (2016) Volcanic ash from Puyehue-Cordón Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol J Linn Soc 118:842–851

    Article  Google Scholar 

  • Irschick DJ, Meyers JJ (2007) An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153:489–499

    Article  Google Scholar 

  • Jacobson ER, Whitford WG (1970) The effect of acclimation on physiological responses to temperature in the snakes, Thamnophis proximus and Natrix rhombifera. Comp Biochem Physiol 35:439–449

    Article  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Jayne BC, Bennett AF (1990) Selection on locomotor performance capacity in a natural population of garter snakes. Evolution 44:1204–1229

    Article  Google Scholar 

  • Kaufmann JS, Bennett AF (1989) The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol Zool 62:1047–1058

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  Google Scholar 

  • Kingsolver JG (2009) The well-temperatured biologist. Am Nat 174:755–768

    PubMed  Google Scholar 

  • Kohlsdorf T, Navas C (2012) Evolution of form and function: morphophysiological relationships and locomotor performance in Tropidurine lizards. J Zool 288:41–49

    Article  Google Scholar 

  • Kubisch EL, Fernández JB, Ibargüengoytía NR (2011) Is locomotor performance optimized at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J Therm Biol 36:328–333

    Article  Google Scholar 

  • Kubisch EL, Fernández JB, Ibargüengoytía NR (2016) Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J Comp Physiol B 186:243–253

    Article  Google Scholar 

  • Lauder GV, Reilly SM (1991) Behavior, morphology, and muscle function-the physiological bases of behavioral evolution. Am Zool 31:1041

    Google Scholar 

  • Le Galliard JF, Clobert J, Ferrière R (2004) Physical performance and Darwinian fitness in lizards. Nature 432:502–505

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lobo F, Espinoza RE, Sanabria EA, Quiroga LB (2012) A new Phymaturus (Iguania: Liolaemidae) from the southern extreme of the Argentine Puna. Copeia 1:12–22

    Article  Google Scholar 

  • Logan ML, Huynh RK, Precious RA, Calsbeek RG (2013) The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Glob Change Biol 19(10):3093–3102

    Article  Google Scholar 

  • Macrini TE, Irschick DJ (1998) An intraspecific analysis of trade-offs in sprinting performance in a West Indian lizard species (Anolis lineatopus). Biol J Linn Soc 63:579–591

    Article  Google Scholar 

  • Márquez J, Ripoll Y, Dalmasso A, Ariza M, Jordan M (2014) Árboles Nativos de la provincia de San Juan. Universidad Nacional de San Juan, San Juan

    Google Scholar 

  • Marsh RL, Bennett AF (1986) Thermal dependence of sprint performance of the lizard Sceloporus occidentalis. J Exp Biol 126:79–87

    CAS  PubMed  Google Scholar 

  • Martín J (1996) Effects of recent feeding on locomotor performance of juvenile Psammodromus algirus lizards. Funct Ecol 10:390–395

    Article  Google Scholar 

  • Martín TL, Huey RB (2008) Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:102–118

    Article  Google Scholar 

  • Martínez Carretero E (1995) La Puna Argentina: Delimitación general y división en distritos florísticos. Bol Soc Argent Bot 31:27–40

    Google Scholar 

  • McElroy MT (2014) Countergradient variation in locomotor performance of two sympatric Polynesian skinks (Emoia impar, Emoia cyanura). Physiol Biochem Zool 87:222–230

    Article  Google Scholar 

  • Miles DB (1994) Population differentiation in locomotor performance and the potential response of a terrestrial organism to global environmental change. Am Zool 34:422–436

    Article  Google Scholar 

  • Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75

    Google Scholar 

  • Miles DB, Sinervo B, Frankino WA (2000) Reproductive burden, locomotor performance, and the cost of reproduction in free ranging lizards. Evolution 54:1386–1395

    Article  CAS  Google Scholar 

  • Miles DB, Snell HL, Snell HM (2001) Intrapopulation variation in endurance of Galapagos lava lizards (Microlophus albemarlensis): evidence for an interaction between natural and sexual selection. Evol Ecol Res 3:795–804

    Google Scholar 

  • Miles DB, Calsbeek R, Sinervo B (2007a) Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Horm Behav 51:548–554

    Article  CAS  Google Scholar 

  • Miles DB, Losos JB, Irschick DJ (2007b) Morphology, performance, and foraging mode. In: Reilly LB, McBrayer LB, Miles DB (eds) Lizard ecology: the evolutionary consequences of foraging mode. Cambridge University Press, Cambridge, pp 49–93

    Chapter  Google Scholar 

  • Pérez Tris J, Díaz JA, Tellería JL (2004) Loss of body mass under predation risk: cost of antipredatory behaviour or adaptive fit-for-escape? Anim Behav 67:511–521

    Article  Google Scholar 

  • Pietrek AG, Walker RS, Novaro AJ (2009) Susceptibility of lizards to predation under two levels of vegetative cover. J Arid Environ 73:574–577

    Article  Google Scholar 

  • Pinch FC, Claussen DL (2003) Effects of temperature and slope on the sprint speed and stamina of the Eastern Fence Lizard, Sceloporus undulatus. J Herpetol 37:671–679

    Article  Google Scholar 

  • Pough FH, Gans C (1982) The vocabulary of reptilian thermoregulation. Biol Reptil 12:17–23

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Robson MA, Miles DB (2000) Locomotor performance and dominance in male tree lizards, Urosaurus ornatus. Funct Ecol 14:338–344

    Article  Google Scholar 

  • Roig F, Martínez Carretero E (1998) La vegetación puneña de la provincia de Mendoza, Argentina. Phitocoenologia 28:565–608

    Article  Google Scholar 

  • Roig Juñent S, Flores GE, Mattoni C (2003) Consideraciones biogeográficas de la Precordillera (Argentina), con base en artrópodos epigeos. In: Morrone JJ, Llorente Bousquets J (eds) Una perspectiva latinoamericana de la Biogeografía. Las prensas de Ciencias, Facultad de Ciencias. Universidad Nacional de México, México, pp 275–288

    Google Scholar 

  • Schulte JA, Losos JB, Cruz FB, Núñez H (2004) The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae: Liolaemini). J Evol Biol 17:408–420

    Article  Google Scholar 

  • Sheth SN, Angert AL (2014) The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68:2917–2931

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, San Francisco

    Google Scholar 

  • Sorci G, Swallow JG, Garland T Jr, Clobert J (1995) Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiol Zool 68:698–720

    Article  Google Scholar 

  • Strobbe F, McPeek MA, De Block M, De Meester L, Stoks R (2009) Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J Evol Biol 22:1172–1182

    Article  CAS  Google Scholar 

  • Tepler S, Mach K, Denny M (2011) Preference versus performance: body temperature of the intertidal snail Chlorostoma funebralis. Biol Bull 220:107–117

    Article  Google Scholar 

  • Tsuji JS, Huey RB, Van Berkum FH, Garland T Jr, Shaw RG (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates. Evol Ecol 3:240–252

    Article  Google Scholar 

  • Tulli MJ, Cruz FB, Herrel A, Vanhooydonck B, Abdala V (2009) The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology 112:379–392

    Article  CAS  Google Scholar 

  • Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215:774–784

    Article  Google Scholar 

  • van Berkum FH (1988) Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am Nat 132:327–343

    Article  Google Scholar 

  • Vanhooydonck B, Van Damme R (1999) Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol Ecol Res 1:785–805

    Google Scholar 

  • Vanhooydonck B, Van Damme R, Aerts P (2001) Speed and stamina trade-off in lacertid lizards. Evolution 55:1040–1048

    Article  CAS  Google Scholar 

  • Vanhooydonck B, Measey J, Edwards S, Makhubo B, Tolley KA, Herrel A (2015) The effects of substratum on locomotor performance in lacertid lizards. Biol J Linn Soc 115:869–881

    Article  Google Scholar 

  • Villavicencio HJ, Acosta JC, Cánovas MG (2005) Dieta de Liolaemus ruibali Donoso Barros (Iguania: liolaeminae) en la reserva de usos múltiples Don Carmelo, San Juan, Argentina. Multequina 14:47–52

    Google Scholar 

  • Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Wu Q, Dang W, Hu YC, Lu HL (2018) Altitude influences thermal ecology and thermal sensitivity of locomotor performance in a toad-headed lizard. J Therm Biol 71:136–141

    Article  Google Scholar 

  • Yuan FL, Pickett EJ, Bonebrake TC (2016) Cooler performance breadth in a viviparous skink relative to its oviparous congener. J Therm Biol 61:106–114

    Article  Google Scholar 

  • Zajitschek SR, Zajitschek F, Miles DB, Clobert J (2012) The effect of coloration and temperature on sprint performance in male and female wall lizards. Biol J Linn Soc 107:573–582

    Article  Google Scholar 

  • Zamora Camacho FJ, Reguera S, Rubiño Hispán MV, Moreno Rueda G (2014) Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol Biol 41:509–517

    Article  Google Scholar 

Download references

Acknowledgements

We thank Arturo Curatola and Andres Calderon for permission to work in Reserva “Don Carmelo”; Nora Ibargüengoytía for lend us the track to trials sprint speed and Alyson Nuñez for assisting us with the English version. Thanks also to Secretaría de Medio Ambiente y Dirección de Conservación y Áreas Protegidas, Provincia de San Juan for research permits. Financial support was received from Beca CICITCA (Res. 1767/14-R, RGA) and project CICITCA 881 (JCA). This research was partially supported by the Universidad Nacional de San Juan and Consejo Nacional de Investigaciones Científicas y Técnicas (beca doctoral CONICET, Res. 2358/14, RGA). Miles was supported by NSF Grant (EF128428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gómez Alés.

Ethics declarations

Conflict of interest

The authors confirm there are no known conflicts of interest associated with this publication.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was not required.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez Alés, R., Acosta, J.C., Astudillo, V. et al. Effect of temperature on the locomotor performance of species in a lizard assemblage in the Puna region of Argentina. J Comp Physiol B 188, 977–990 (2018). https://doi.org/10.1007/s00360-018-1185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-018-1185-y

Keywords

Navigation