Skip to main content
Log in

Staying hot to fight the heat-high body temperatures accompany a diurnal endothermic lifestyle in the tropics

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Much of our knowledge of the thermoregulation of endotherms has been obtained from species inhabiting cold and temperate climates, our knowledge of the thermoregulatory physiology of tropical endotherms is scarce. We studied the thermoregulatory physiology of a small, tropical mammal, the large treeshrew (Tupaia tana, Order Scandentia) by recording the body temperatures of free-ranging individuals, and by measuring the resting metabolic rates of wild individuals held temporarily in captivity. The amplitude of daily body temperature (~ 4 °C) was higher in treeshrews than in many homeothermic eutherian mammals; a consequence of high active-phase body temperatures (~ 40 °C), and relatively low rest-phase body temperatures (~ 36 °C). We hypothesized that high body temperatures enable T. tana to maintain a suitable gradient between ambient and body temperature to allow for passive heat dissipation, important in high-humidity environments where opportunities for evaporative cooling are rare. Whether this thermoregulatory phenotype is unique to Scandentians, or whether other warm-climate diurnal small mammals share similar thermoregulatory characteristics, is currently unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMR:

Basal metabolic rate

C dry :

Dry thermal conductance (mO2·°C−1·h−1)

C wet :

Wet thermal conductance (mO2·°C−1·h−1)

EHL:

Evaporative heat loss (W)

EWL:

Evaporative water loss (mg·g−1·h−1)

HI:

Heterothermy index

MHP:

Metabolic heat production (W)

RMR:

Resting metabolic rate

T a :

Ambient temperature (respirometer temperature or environmental temperature)

T b :

Core body temperature

T lc :

Lower limit of the TNZ

T sub :

Subcutaneous temperature

TNZ:

Thermoneutral zone

O2 :

Volumetric rate of oxygen consumed by the animal (mO2·h−1)

References

  • Alagaili AN, Bennett NC, Mohammed OB, Zalmout IS, Boyles JG (2017) Body temperature patterns of a small endotherm in an extreme desert environment. J Arid Environ 137:16–20. https://doi.org/10.1016/j.jaridenv.2016.10.010

    Article  Google Scholar 

  • Angilletta MJ Jr, Cooper BS, Schuler MS, Boyles JG (2010) The evolution of thermal physiology in endotherms. Front Biosci 2:861–881

    Google Scholar 

  • Bartholomew GA (1972) Body temperature and energy metabolism. In: Gordon MS, Bartholomew GA, Grinnell AD, Jorgensen CB, White FN (eds) Animal physiology: principles and adaptations, Second edn. Macmillan Publishing Co., Inc., New York, pp 298–368

    Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206(4419):649–654

    Article  PubMed  CAS  Google Scholar 

  • Bennie JJ, Duffy JP, Inger R, Gaston KJ (2014) Biogeography of time partitioning in mammals. PNAS 111(38):13727–13732. https://doi.org/10.1073/pnas.1216063110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bieber C, Cornils JS, Hoelzl F, Giroud S, Ruf T (2017) The costs of locomotor activity? Maximum body temperatures and the use of torpor during the active season in edible dormice. J Comp Physiol B 187(5):803–814. https://doi.org/10.1007/s00360-017-1080-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyles JG, Smit B, McKechnie AE (2011) A new comparative metric for estimating heterothermy in endotherms. Physiol Biochem Zool 84(1):115–123

    Article  PubMed  Google Scholar 

  • Boyles JG, Thompson AB, McKechnie AE, Malan E, Humphries MM, Careau V (2013) A global heterothermic continuum in mammals. Glob Ecol Biogeogr 22(9):1029–1039. https://doi.org/10.1111/geb.12077

    Article  Google Scholar 

  • Brodie JF, Strimas-Mackey M, Mohd-Azlan J, Granados A, Bernard H, Giordano AJ, Helmy OE (2017) Lowland biotic attrition revisited: body size and variation among climate change ‘winners’ and ‘losers’. Proc R Soc B 284(1847):20162335. https://doi.org/10.1098/rspb.2016.2335

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnham K, Anderson D (2002) Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer-Verlag, New York, NY

    Google Scholar 

  • Clarke A, O’Connor MI (2014) Diet and body temperature in mammals and birds. Glob Ecol Biogeogr 23:1000–1008. https://doi.org/10.1111/geb.12185

    Article  Google Scholar 

  • Crawley MJ (2007) The R Book. John Wiley & Sons Ltd, Chichester

  • Crompton AW, Taylor CR, Jagger JA (1978) Evolution of homeothermy in mammals. Nature 272:333–336

    Article  PubMed  CAS  Google Scholar 

  • de Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR, Cannon CH, van den Bergh G, Meijaard E, Metcalfe I, Boitani L, Maiorano L, Shoup R, von Rintelen T (2014) Borneo and Indochina are Major Evolutionary Hotspots for Southeast Asian Biodiversity. Syst Biol 63(6):879–901. https://doi.org/10.1093/sysbio/syu047

    Article  PubMed  Google Scholar 

  • Emmons LH (2000) Tupai: A Field Study of Bornean Treeshrews. University of California Press, Los Angeles

    Google Scholar 

  • Fritz SA, Bininda-Emonds ORP, Purvis A (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12(6):538–549. https://doi.org/10.1111/j.1461-0248.2009.01307.x

    Article  PubMed  Google Scholar 

  • Gerson AR, Smith EK, Smit B, McKechnie AE, Wolf BO (2014) The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures. Physiol Biochem Zool 87(6):782–795

    Article  PubMed  Google Scholar 

  • Grigg GC, Beard LA (2000) Hibernation by echidnas in mild climates: hints about the evolution of endothermy? In: Heldmaier G, Klingenspor M (eds) Life in the Cold: Eleventh Internation Hibernation Symposium. Springer, New York, pp 5–20

  • Heinrich B (1977) Why have some animals evolved to regulate a high body temperature? Am Nat 111:623–640

    Article  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil Trans R Soc B 367(1596):1665–1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes AC (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8(1):e01624. https://doi.org/10.1002/ecs2.1624

    Article  Google Scholar 

  • Humphries MM, Careau V (2011) Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol 51(3):419–431. https://doi.org/10.1093/icb/icr059

    Article  PubMed  Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9):2648–2648

    Article  Google Scholar 

  • Kobbe S, Nowack J, Dausmann K (2014) Torpor is not the only option: seasonal variations of the thermoneutral zone in a small primate. J Comp Physiol B 184(6):789–797. https://doi.org/10.1007/s00360-014-0834-z

    Article  PubMed  Google Scholar 

  • Levesque DL, Lovegrove BG (2014) Increased homeothermy during reproduction in a basal placental mammal. J Exp Biol 217:1535–1542

    Article  PubMed  Google Scholar 

  • Levesque DL, Lobban KD, Lovegrove BG (2014) Effects of reproductive status and high ambient temperatures on the body temperature of a free-ranging basoendotherm. J Comp Physiol B 184:1041–1053. https://doi.org/10.1007/s00360-014-0858-4

    Article  PubMed  Google Scholar 

  • Levesque DL, Nowack J, Stawski C (2016) Modelling mammalian energetics: the heterothermy problem. Clim Change Resp 3(1):7. https://doi.org/10.1186/s40665-016-0022-3

    Article  Google Scholar 

  • Levesque DL, Menzies AK, Landry-Cuerrier M, Larocque G, Humphries MM (2017) Embracing heterothermic diversity: non-stationary waveform analysis of temperature variation in endotherms. J Comp Physiol B 187(5):749–757. https://doi.org/10.1007/s00360-017-1074-9

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156(2):201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2017) A phenology of the evolution of endothermy in birds and mammals. Biol Rev 92(2):1213–1240. https://doi.org/10.1111/brv.12280

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Génin F (2008) Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec, Echinops telfairi. J Comp Physiol B 178:691–698

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Canale CI, Levesque DL, Fluch G, Řeháková-Petrů M, Ruf T (2014) Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change? Physiol Biochem Zool 87(1):30–45. https://doi.org/10.1086/673313

    Article  PubMed  Google Scholar 

  • MacArthur RA, Campbell KL (1994) Heat increment of feeding and its thermoregulatory benefit in the muskrat (Ondatra zibethicus). J Comp Physiol B 164(2):141–146. https://doi.org/10.1007/bf00301656

    Article  PubMed  CAS  Google Scholar 

  • Malan A (1996) The origins of hibernation: a reappraisal. In: Geiser F, Hulbert A, Nicol S (eds) Adaptations to the cold. University of New England Press, Armidale, NSW, pp 1–6

    Google Scholar 

  • Martin R (1968) Reproduction and Ontogeny in tree-shrews (Tupaia belangeri), with reference to their general behaviour and taxonomic relationships. Zeitschrift für Tierpsychologie 25(4):409–495

    Article  PubMed  CAS  Google Scholar 

  • Mazerolle MJ (2013) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c)

  • McCain CM, King SRB (2014) Body size and activity times mediate mammalian responses to climate change. Glob Change Biol 20(6):1760–1769. https://doi.org/10.1111/gcb.12499

    Article  Google Scholar 

  • McKechnie AE, Lovegrove BG (2001) Thermoregulation and the energetic significance of clustering behavior in the white-backed mousebird (Colius colius). Physiol Biochem Zool 74(2):238–249

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1980) On estimating thermal conductance in endotherms. Physiol Zool 53:145–156

    Article  Google Scholar 

  • Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A (2018) Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J Anim Ecol Early View. https://doi.org/10.1111/1365-2656.12818

    Article  Google Scholar 

  • Montagna W, Yun JS, Silver AF, Quevedo WC (1962) The skin of primates. XIII. The skin of the tree shrew (Tupaia glis). Am J Phys Anthropol 20(4):431–439. https://doi.org/10.1002/ajpa.1330200404

    Article  Google Scholar 

  • Munshi-South J, Emmons LH, Bernard H (2007) Behavioral monogamy and fruit availability in the large treeshrew (Tupaia tana). In: Sabah (ed), Malaysia J Mammal 88 (6):1427–1438. https://doi.org/10.1644/06-MAMM-A-295R1.1

    Article  Google Scholar 

  • Mzilikazi N, Masters JC, Lovegrove BG (2006) Lack of torpor in free-ranging southern lesser galagos, Galago moholi: ecological and physiological considerations. Folia Primatol 77(6):465–476

    Article  PubMed  Google Scholar 

  • Naya DE, Spangenberg L, Naya H, Bozinovic F (2013) How does evolutionary variation in basal metabolic rates arise? A statistical assessment and a mechanistic model. Evolution 67(5):1463–1476

    PubMed  Google Scholar 

  • Nowack J, Mzilikazi N, Dausmann KH (2010) Torpor on demand: heterothermy in the non-lemur primate Galago moholi. PLoS ONE 5(5):e10797. https://doi.org/10.1371/journal.pone.0010797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orme D (2013) The caper package: comparative analysis of phylogenetics and evolution in R. 3.3.1 edn.

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.pp 1–108

  • Quintero I, Wiens JJ (2013) Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol Lett 16(8):1095–1103

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Refinetti R (1997) The effects of ambient temperature on the body temperature rhythm of rats, hamsters, gerbils, and tree shrews. J Therm Biol 22(4–5):281–284

    Article  Google Scholar 

  • Riek A, Geiser F (2013) Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev 88:564–572

    Article  PubMed  Google Scholar 

  • Sargis EJ (2004) New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol Anthropol: Issues News Rev 13(2):56–66

    Article  Google Scholar 

  • Scholander PF, Hock R, Walters V, Irving L (1950) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull 99(2):259–271

    Article  PubMed  CAS  Google Scholar 

  • Sheriff M, Williams C, Kenagy G, Buck C, Barnes B (2012) Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J Comp Physiol B 182(6):841–847. https://doi.org/10.1007/s00360-012-0661-z

    Article  PubMed  Google Scholar 

  • Speakman JR, Krol E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79(4):726–746. https://doi.org/10.1111/j.1365-2656.2010.01689.x

    Article  PubMed  Google Scholar 

  • Swanson DL, McKechnie AE, Vézina F (2017) How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms. J Comp Physiol B 187(8):1039–1056. https://doi.org/10.1007/s00360-017-1096-3

    Article  PubMed  Google Scholar 

  • Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol 2:2151–2202. https://doi.org/10.1002/cphy.c110055

    Article  PubMed  Google Scholar 

  • Tuen AA, Sayok AK, Das I, Noweg GT, Laman CJ, Met L Applying the HCVF toolkit to assess the conservation value of Gunung Singai, Sarawak, East Malaysia. In: Proceedings of 3rd RIMBA Symposium on Sustaining Livelihood through Prudent Utilization and Management of Natural Resources, Institute of Biodiversity & Environmental Conservation, Universiti Malaysia Sarawak, 2014. pp 52–62

  • Wallace AR (1890) The Malay Archipelago: the land of the orang-utan and the bird of paradise: a narrative of travel, with studies of man and nature. Macmillan

  • Wang J, Xu X-L, Ding Z-Y, Mao R-R, Zhou Q-X, Lv L-B, Wang L-P, Wang S, Zhang C, Xu L (2013) Basal physiological parameters in domesticated tree shrews (Tupaia belangeri chinensis). Zool Res 34(2):69–74

    Article  CAS  Google Scholar 

  • Welman S, Tuen AA, Lovegrove BG (2017) Searching for the Haplorrhine heterotherm: field and laboratory data of free-ranging tarsiers. Frontiers in Physiology 8:745. https://doi.org/10.3389/fphys.2017.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • White CR, Portugal SJ, Martin GR, Butler PJ (2006) Respirometry: Anhydrous Drierite equilibrates with carbon dioxide and increases washout times. Physiol Biochem Zool 79(5):977–980

    Article  PubMed  Google Scholar 

  • White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63(10):2658–2667. https://doi.org/10.1111/j.1558-5646.2009.00747.x

    Article  PubMed  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Pub., Fort Worth

  • Withers PC (2001) Design, calibration and calculation for flow-through respirometry systems. Aust J Zool 49(4):445–461

    Article  Google Scholar 

  • Withers PC Free ranging body temperatures of mammals: Are there still phylogenetic effects? 12th International Mammalogical Congress, Perth, Western Australia, 2017

  • Withers PC, Cooper CE, Maloney SK, Bozinovic F, Cruz-Neto AP (2016) Ecological and environmental physiology of mammals. Oxford University Press

  • Wolf BO, Coe BH, Gerson AR, McKechnie AE (2017) Comment on an analysis of endotherm thermal tolerances: systematic errors in data compilation undermine its credibility. Proc R Soc B 284 (1855). https://doi.org/10.1098/rspb.2016.2523

  • Wu J, Yonezawa T, Kishino H (2017) Rates of molecular evolution suggest natural history of life history traits and a post-K-Pg nocturnal bottleneck of placentals. Curr Biol 27(19):3025–3033.e3025. https://doi.org/10.1016/j.cub.2017.08.043

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Zhang L, Wang ZK (2010) Thermogenic characteristics and evaporative water loss in the tree shrew (Tupaia belangeri). J Therm Biol 35(6):290–294. https://doi.org/10.1016/j.jtherbio.2010.06.005

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the following individuals and institutions for their assistance: the Bidayuh communities of Kampung Tanjong Bowang and Kampung Barieng, Singai, Bau District, for the use of their forest; Mary Buloh Balang, Shaun Welman, Cindy Peter, Cecilia Emang Ajeng, Matthew Jenang, and Yap Pui Kwan, for their assistance in the field; and Michelle Bassis for help with the body temperature/activity database.

Author information

Authors and Affiliations

Authors

Contributions

DLL, AAT and BGL conceived and designed the study. DLL and AAT secured the permits and performed the data collection. DLL analysed the data and drafted the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Danielle L. Levesque.

Ethics declarations

Ethical standards

All procedures involving the use of animals were approved by the Animal Research Ethics Committee of the University of Kwa-Zulu Natal (061/13/Animal), Sarawak Forestry Department and the Malaysian Ministry of Natural Resources (permit no. NCCD.907.4.4(9)-223, and NCCD.907.4.4(JLD.13)-227), and comply with all local laws. The research was supported by the Malaysian Ministry of Higher Education (FRGS/1/2013/ST03/UNIMAS/01/2), the UNIMAS Postdoctoral Scheme (DLL), and incentive grants from the University of KwaZulu-Natal and the National Research Foundation (South Africa) to BGL.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levesque, D.L., Tuen, A.A. & Lovegrove, B.G. Staying hot to fight the heat-high body temperatures accompany a diurnal endothermic lifestyle in the tropics. J Comp Physiol B 188, 707–716 (2018). https://doi.org/10.1007/s00360-018-1160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-018-1160-7

Keywords

Navigation