Skip to main content

Advertisement

Log in

Phenotypic plasticity in the common garden snail: big guts and heavier mucus glands compete in snails faced with the dual challenge of poor diet and coarse substrate

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Phenotypic plasticity allows animals to manage environmental challenges. Studies aimed at quantifying plasticity often focus on one challenge, such as diet, and one organ system, such the gastrointestinal tract, but this approach may not adequately reflect how plasticity could buffer multiple challenges. Thus, we investigated the outcomes of a dual challenge experiment that fed land snails either a high-fibre (low quality) or a low-fibre (high quality) diet, and simultaneously exercised them daily over 1.2 m on either a smooth surface of polyvinyl chloride (PVC) or a rough sandpaper. By the end of 20 days, snails fed the poor quality diet had a longer crop and oesophagus and a heavier intestine and rectum than those offered a low-fibre diet. Additionally, high-fibre fed snails had a smaller spermoviduct and oviduct. When also exercised on sandpaper, high-fibre fed snails had a smaller digestive gland, a main energy store, than those exercised on PVC. All snails exercised on sandpaper had a heavier pedal mucus gland, used a loping gait and used less mucus than those on PVC plastic, but there was no difference in the average speed of snails on either surface, supporting the conclusion that loping is a mucus conserving gait. Notably, snails faced with both a diet and substrate challenge had a smaller kidney, which could directly effect fecundity. This demonstrates that our dual challenge approach has potential for evaluating the costs and limits of the plasticity necessary to fully appreciate the evolutionary significance of plasticity in snails and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Artacho P, Nespolo RF (2009) Natural selection reduces energy metabolism in the garden snail, Helix aspersa (Cornu aspersum). Evolution 63(4):1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc Lond B Biol Sci 277(1681):503–511. doi:10.1098/rspb.2009.1355

    Article  Google Scholar 

  • Bailey SER (1975) The seasonal and daily patterns of locomotor activity in the snail Helix aspersa Müller, and their relation to environmental variables. J Molluscan Stud 41(5):415–428

    Google Scholar 

  • Bailey SER (1989) Foraging behaviour of terrestrial gastropods: integrating field and laboratory studies. J Molluscan Stud 55(2):263–272

    Article  Google Scholar 

  • Barboza PS, Parker KL, Hume ID (2008) Integrative wildlife nutrition. Springer, Berlin

    Google Scholar 

  • Barker GM (2001) Gastropods on land: phylogeny, diversity and adaptive morphology. In: Barker GM (ed) The biology of terrestrial molluscs. CABI Publishing, Wallingford, pp 1–146

    Chapter  Google Scholar 

  • Bauer E, Lampert N, Mikaelyan A, Köhler T, Maekawa K, Brune A (2015) Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol Ecol 91(2):1–14. doi:10.1093/femsec/fiu028

    Article  PubMed  Google Scholar 

  • Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ Jr (2011) The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol Biochem Zool 84(6):543–552. doi:10.1086/662551

    Article  PubMed  Google Scholar 

  • Campion M (1961) The structure and function of the cutaneous glands in Helix aspersa. Q J Microscop Sci 102(1):195–216

    Google Scholar 

  • Carlson A (1905) The physiology of locomotion in gasteropods. Biol Bull 8(2):85–92

    Article  Google Scholar 

  • Castaneda LE, Sabat P, Gonzalez SP, Nespolo RF (2006) Digestive plasticity in tadpoles of the chilean giant frog (Caudiverbera caudiverbera): factorial effects of diet and temperature. Physiol Biochem Zool 79(5):919–926

    Article  PubMed  Google Scholar 

  • Charrier M, Brune A (2003) The gut microenvironment of helicid snails (Gastropoda: Pulmonata): in situ profiles of pH, oxygen, and hydrogen determined by microsensors. Can J Zool 81(5):928–935

    Article  Google Scholar 

  • Charrier M, Daguzan J (1980) Food consumption, production and energy evaluation in Helix aspersa Müller (a terrestrial pulmonate gasteropod). Ann Nutr L’Alimentation 34(1):147–166

    CAS  Google Scholar 

  • Charrier M, Combet-Blanc Y, Ollivier B (1998) Bacterial flora in the gut of Helix aspersa (Gastropoda Pulmonata): evidence for a permanent population with a dominant homolactic intestinal bacterium, Enterococcus casseliflavus. Can J Microbiol 44(1):20–27

    Article  CAS  Google Scholar 

  • Charrier M, Fonty G, Gaillard-Martinie B, Ainouche K, Andant G (2006) Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, Helix pomatia and Cornu aspersum (Gastropoda: Pulmonata). Biol Res 39(4):669–681

    Article  CAS  PubMed  Google Scholar 

  • Chevalier L, Desbuquois C, Le Lannic J, Charrier M (2001) Poaceae in the natural diet of the snail Helix aspersa Müller (Gastropoda, Pulmonata). Comptes Rendus de l’Académie des Sci Ser III Sci Vie 324(11):979–987. doi:10.1016/S0764-4469(01)01382-8

    CAS  Google Scholar 

  • Courtney Jones SK, Cowieson AJ, Williamson SA, Munn AJ (2012) No effect of short-term exposure to high-fibre diets on the gastrointestinal morphology of layer hens (Gallus gallus domesticus): body reserves are used to manage energy deficits in favour of phenotypic plasticity. J Anim Physiol Anim Nutr (Epub ahead of print)

  • Cramp RL, Reid S, Seebacher F, Franklin CE (2014) Synergistic interaction between UVB radiation and temperature increases susceptibility to parasitic infection in a fish. Biol Lett. doi:10.1098/rsbl.2014.0449

    PubMed  PubMed Central  Google Scholar 

  • Cummings JH, Rombeau JL, Sakata T (2004) Physiological and clinical aspects of short-chain fatty acids. Cambridge University Press, Cambridge

    Google Scholar 

  • Davidson DH (1976) Assimilation efficiencies of slugs on different food materials. Oecologia 26(1):267–273

    Article  CAS  PubMed  Google Scholar 

  • Davies MS, Blackwell J (2007) Energy saving through trail following in a marine snail. Proc R Soc B Biol Sci 274(1614):1233–1236

    Article  Google Scholar 

  • Denny M (1980a) Locomotion: the cost of gastropod crawling. Science 208(4449):1288–1290. doi:10.1126/science.208.4449.1288

    Article  CAS  PubMed  Google Scholar 

  • Denny M (1980b) The role of gastropod pedal mucus in locomotion. Nature 285(5761):160–161

    Article  Google Scholar 

  • Denny MW (1980c) The role of gastropod pedal mucus in locomotion. Nature 285(1):160–161

    Article  Google Scholar 

  • Denny MW (1984) Mechanical properties of pedal mucus and their consequences for gastropod structure and performance. Am Zool 24(1):23–36

    Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13(2):77–81

    Article  CAS  PubMed  Google Scholar 

  • Donovan D, Baldwin J, Carefoot T (1999) The contribution of anaerobic energy to gastropod crawling and a re-estimation of minimum cost of transport in the abalone, Haliotis kamtschatkana (Jonas). J Exp Mar Biol Ecol 235(2):273–284. doi:10.1016/S0022-0981(98)00174-9

    Article  Google Scholar 

  • Féher O, Erdélyi L, Papp A (1988) The effect of pentylenetetrazol on the metacerebral neuron of Helix pomatia. Gen Physiol Biophys 7(5):505–516

    PubMed  Google Scholar 

  • García A, Perea JM, Mayoral A, Acero R, Martos J, Gómez G, Peña F (2006) Laboratory rearing conditions for improved growth of juvenile Helix aspersa Müller snails. Lab Anim 40(3):309–316

    Article  PubMed  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407

    Article  Google Scholar 

  • Gillespie DOS, Russell AF, Lummaa V (2008) When fecundity does not equal fitness: evidence of an offspring quantity versus quality trade-off in pre-industrial humans. Proc R Soc Lond B Biol Sci 275(1635):713–722. doi:10.1098/rspb.2007.1000

    Article  Google Scholar 

  • Gómez BJ (2001) Structure and function of the reproductive system. In: Barker GM (ed) The biology of terrestrial molluscs. CABI Publishing, Wallingford, pp 307–330

    Chapter  Google Scholar 

  • Gross JE, Wang Z, Wunder BA (1985) Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. J Mammal 66(4):661–667

    Article  Google Scholar 

  • Guiller A, Martin MC, Hiraux C, Madec L (2012) Tracing the invasion of the mediterranean land snail Cornu aspersum: becoming an agricultural and garden pest in areas recently introduced. PloS One 7(12) (Epub)

  • Hödl E, Felder E, Chabicovsky M, Dallinger R (2010) Cadmium stress stimulates tissue turnover in Helix pomatia: increasing cell proliferation from metal tolerance to exhaustion in molluscan midgut gland. Cell Tissue Res 341(1):159–171

    Article  PubMed  Google Scholar 

  • Hume I, Beiglböck C, Ruf T, Frey-Roos F, Bruns U, Arnold W (2002) Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). J Comp Physiol B 172(3):197–207. doi:10.1007/s00360-001-0240-1

    Article  CAS  PubMed  Google Scholar 

  • Huntzinger M, Karban R, Cushman JH (2008) Negative effects of vertebrate herbivores on invertebrates in a coastal dune community. Ecology 89(7):1972–1980

    Article  PubMed  Google Scholar 

  • Igllesias J, Castillejo J (1999) Field observations on feeding of the land snail Helix aspersa Müller. J Molluscan Stud 65(4):411–423. doi:10.1093/mollus/65.4.411

    Article  Google Scholar 

  • Kern P, Cramp RL, Seebacher F, Ghanizadeh Kazerouni E, Franklin CE (2015) Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits. Comp Biochem Physiol A Mol Integr Physiol 190:75–82. doi:10.1016/j.cbpa.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  • Knop E, Reusser N (2012) Jack-of-all-trades: phenotypic plasticity facilitates the invasion of an alien slug species. Proc R Soc Lond B Biol Sci 279(1747):4668–4676. doi:10.1098/rspb.2012.1564

    Article  Google Scholar 

  • Koemtzopoulos E, Staikou A (2007) Variation in spermathecal morphology is independent of sperm competition intensity in populations of the simultaneously hermaphroditic land snail Cornu aspersum. Zoology 110(2):139–146. doi:10.1016/j.zool.2006.10.001

    Article  PubMed  Google Scholar 

  • Kruckenhauser L, Harl J, Sattmann H (2010) Optimized drowning procedures for pulmonate land snails allowing subsequent DNA analysis and anatomical dissections. Ann Naturhistorischen Museums Wien Ser B Bot Zool 112(1):173–175

    Google Scholar 

  • Lai JH, del Alamo JC, Rodríguez-Rodríguez J, Lasheras JC (2010) The mechanics of the adhesive locomotion of terrestrial gastropods. J Exp Biol 213(22):3920–3933

    Article  PubMed  Google Scholar 

  • Lauga E, Hosoi AE (2006) Tuning gastropod locomotion: modeling the influence of mucus rheology on the cost of crawling. Phys Fluids 18(1):102–113

    Google Scholar 

  • Lesel M, Charrier M, Lesel R (1990) Some characteristics of the bacterial flora housed by the brown garden snail Helix aspersa (Gastropoda Pulmonata). Preliminary results. In: Lesel R (ed) Proceedings of the international symposium on microbiology in poecilotherms. Elsevier Science, Paris, pp 149–152

    Google Scholar 

  • Liu QS, Wang DH (2007) Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). J Comp Physiol B 177(5):509–518

    Article  CAS  PubMed  Google Scholar 

  • Lőw P, Molnár K, Kriska G (2016) Atlas of animal anatomy and histology. Springer, Berlin

    Google Scholar 

  • Madec L, Desbuquois C, Coutellec-Vreto M-A (2000) Phenotypic plasticity in reproductive traits: importance in the life history of Helix aspersa (Mollusca: Helicidae) in a recently colonized habitat. Biol J Linn Soc 69(1):25–39. doi:10.1111/j.1095-8312.2000.tb01667.x

    Article  Google Scholar 

  • Maldonado K, Bozinovic F, Rojas JM, Sabat P (2011) Within-species digestive tract flexibility in rufous-collared sparrows and the climatic variability hypothesis. Physiol Biochem Zool 84(4):377–384

    Article  PubMed  Google Scholar 

  • McKee A, Voltzow J, Pernet B (2013) Substrate attributes determine gait in a terrestrial gastropod. Biol Bull 224(1):53–61

    Article  PubMed  Google Scholar 

  • Munn AJ, Clissold F, Tarszisz E, Kimpton K, Dickman CR, Hume ID (2009) Hindgut plasticity in wallabies fed hay either unchopped or ground and pelleted: fiber is not the only factor. Physiol Biochem Zool 82(3):270–279. doi:10.1086/597527

    Article  CAS  PubMed  Google Scholar 

  • Myers FL, Northcote D (1959) Partial purification and some properties of a cellulase from Helix pomatia. Biochem J 71(4):749–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naya DE, Bozinovic F, Karasov WH (2008) Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of rodents. Am Nat 172(4):122–134

    Article  Google Scholar 

  • Naya DE, Catalan T, Artacho P, Gaitan-Espitia JD, Nespolo RF (2011) Exploring the functional association between physiological plasticity, climatic variability, and geographical latitude: lessons from land snails. Evol Ecol Res 13(6):647–659

    Google Scholar 

  • Parker GH (1937) The loping of land-snails. Biol Bull 72(3):287–289

    Article  Google Scholar 

  • Pearce TA (1989) Loping locomotion in terrestrial gastropods. Walkerana 3(10):229–237

    Google Scholar 

  • Perea JM, Garcia A, Gómez G, Acero R, Peña F, Gómez S (2007) Effect of light and substratum structural complexity on microhabitat selection by the snail Helix aspersa Müller. J Molluscan Stud 73(1):39–43

    Article  Google Scholar 

  • Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12(4):134–138. doi:10.1016/S0169-5347(97)01003-3

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20(9):481–486. doi:10.1016/j.tree.2005.06.001

    Article  PubMed  Google Scholar 

  • Raab S, Leiser R, Kemmer H, Claus R (1998) Effects of energy and purines in the diet on proliferation, differentiation, and apoptosis in the small intestine of the pig. Metabolism 47(9):1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Raubenheimer D, Bassil K (2007) Separate effects of macronutrient concentration and balance on plastic gut responses in locusts. J Comp Physiol B 177(8):849–855. doi:10.1007/s00360-007-0180-5

    Article  CAS  PubMed  Google Scholar 

  • Robertson JB, Van Soest PJ (1981) The detergent system of analysis and its application to human foods. In: James WPT, Theander O (eds) The analysis of dietary fiber in food. Marcel Dekker, New York, pp 123–158

    Google Scholar 

  • Sakata T (1987) Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58(01):95–103. doi:10.1079/BJN19870073

    Article  CAS  PubMed  Google Scholar 

  • Savory CJ, Gentle MJ (1976) Changes in food intake and gut size in Japanese quail in response to manipulation of dietary fibre content. Br Poult Sci 17(6):571–580

    Article  CAS  PubMed  Google Scholar 

  • Scheiner SM, Gurevitch J (1993) Design and analysis of ecological experiments. Chapman and Hall, New York

    Google Scholar 

  • Smith AM, Morin MC (2002) Biochemical differences between trail mucus and adhesive mucus from marsh periwinkle snails. Biol Bull 203(3):338–346

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Quick TJ, Peter RS (1999) Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia limatula. Biol Bull 196(1):34–44

    Article  CAS  PubMed  Google Scholar 

  • Starck JM (1999) Phenotypic flexibility of the avian gizzard: rapid, reversible and repeated changes of organ size in response to changes in dietary fibre content. J Exp Biol 202(22):3171–3179

    PubMed  Google Scholar 

  • Starck JM (2005) Structural flexibility of the digestive system of tetrapods: Patterns and processes on the level of cells and tissues. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, pp 175–200

    Google Scholar 

  • Starck JM, Rahmaan GHA (2003) Phenotypic flexibility of structure and function of the digestive system of Japanese quail. J Exp Biol 206(11):1887–1897

    Article  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories, vol 249. Oxford University Press, Oxford

    Google Scholar 

  • Stillwell RC, Wallin WG, Hitchcock LJ, Fox CW (2007) Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia 153(2):309–321

    Article  PubMed  Google Scholar 

  • Tompa AS, Wilbur KM (1977) Calcium mobilisation during reproduction in snail Helix aspersa. Nature 270(5632):53–54

    Article  CAS  PubMed  Google Scholar 

  • van Gils JA, Piersma T, Dekinga A, Dietz MW (2003) Cost-benefit analysis of mollusc-eating in a shorebird II. Optimizing gizzard size in the face of seasonal demands. J Exp Biol 206(19):3369–3380. doi:10.1242/jeb.00546

    Article  PubMed  Google Scholar 

  • Van Weel PB (1961) The comparative physiology of digestion in molluscs. Am Zool 1(2):245–252

    Article  Google Scholar 

  • Visser MHC (1977) The morphology and significance of the spermoviduct and prostate in the evolution of the reproductive system of the pulmonata. Zool Scr 6(1):43–54. doi:10.1111/j.1463-6409.1977.tb00758.x

    Article  Google Scholar 

  • Watkins B, Simkiss K (1990) Interactions between soil bacteria and the molluscan alimentary tract. J Molluscan Stud 56(2):267–274

    Article  Google Scholar 

  • Zaldibar B, Cancio I, Marigómez I (2007) Reversible alterations in epithelial cell turnover in digestive gland of winkles (Littorina littorea) exposed to cadmium and their implications for biomarker measurements. Aquat Toxicol 81(2):183–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to staff at the University of Wollongong for assisting with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Munn.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munn, A.J., Treloar, M. Phenotypic plasticity in the common garden snail: big guts and heavier mucus glands compete in snails faced with the dual challenge of poor diet and coarse substrate. J Comp Physiol B 187, 545–561 (2017). https://doi.org/10.1007/s00360-016-1051-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1051-8

Keywords

Navigation