Skip to main content
Log in

Evoked-potential audiogram variability in a group of wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Hearing is considered the primary sensory modality of cetaceans and enables their vital life functions. Information on the hearing sensitivity variability within a species obtained in a biologically relevant wild context is fundamental to evaluating potential noise impact and population-relevant management. Here, non-invasive auditory evoked-potential methods were adopted to describe the audiograms (11.2–152 kHz) of a group of four wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) during a capture-and-release health assessment project in Poyang Lake, China. All audiograms presented a U shape, generally similar to those of other delphinids and phocoenids. The lowest auditory threshold (51–55 dB re 1 µPa) was identified at a test frequency of 76 kHz, which was higher than that observed in aquarium porpoises (54 kHz). The good hearing range (within 20 dB of the best hearing sensitivity) was from approximately 20 to 145 kHz, and the low- and high-frequency hearing cut-offs (threshold > 120 dB re l μPa) were 5.6 and 170 kHz, respectively. Compared with aquarium porpoises, wild porpoises have significantly better hearing sensitivity at 32 and 76 kHz and worse sensitivity at 54, 108 and 140 kHz. The audiograms of this group can provide a basis for better understanding the potential impact of anthropogenic noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABR:

Auditory brainstem response

AEP:

Auditory evoked potential

EEG:

Electroencephalography

EFR:

Envelope-following response

FT:

Fourier transformation

PSD:

Power spectral density

rms:

Root mean square

SAM:

Sinusoidally amplitude-modulated

sd:

Standard deviation

peSPL:

Peak-to-peak equivalent sound pressure level

PIT:

Passive integrated transponder tag

References

  • ANSI (2018) Procedure for determining audiograms in toothed whales through evoked potential methods. Melville, New York

    Google Scholar 

  • Bibikov NG (1992) Auditory brainstem responses in the harbor porpoise (phocoena phocoena). Plenum Press, New York

    Book  Google Scholar 

  • Branstetter BK, Leger J, Acton D, Stewart J, Houser D, Finneran JJ, Jenkins K (2017) Killer whale (Orcinus orca) behavioral audiograms. J Acoust Soc Am 141:2387–2398. https://doi.org/10.1121/1.4979116

    Article  PubMed  Google Scholar 

  • Castellote M, Mooney TA, Quakenbush L, Hobbs R, Goertz C, Gaglione E (2014) Baseline hearing abilities and variability in wild beluga whales (Delphinapterus leucas). J Exp Biol 217:1682–1691. https://doi.org/10.1242/jeb.093252

    Article  PubMed  Google Scholar 

  • Cook MLH (2006) Behavioral and auditory evoked potential (aep) hearing measurements in odontocete cetaceans. University of South Florida, Tampa

    Google Scholar 

  • Finneran JJ, Houser DS (2006) Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 119:3181–3192. https://doi.org/10.1121/1.2180208

    Article  PubMed  Google Scholar 

  • Finneran JJ, Mulsow J, Houser DS, Burkard RF (2016) Place specificity of the click-evoked auditory brainstem response in the bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 140:2593–2602. https://doi.org/10.1121/1.4964274

    Article  PubMed  Google Scholar 

  • Haver SM, Gedamke J, Hatch LT, Dziak RP, Van Parijs S, McKenna MF, Barlow J, Berchok C, DiDonato E, Hanson B, Haxel J (2018) Monitoring long-term soundscape trends in US Waters: the NOAA/NPS Ocean noise reference station network. Marine Policy 1(90):6–13. https://doi.org/10.1016/j.marpol.2018.01.023

    Article  Google Scholar 

  • Heffner HE, Heffner RS (2018) Comments on Killer whale (Orcinus orca) behavioral audiograms. J Acoust Soc Am 143:500–503. https://doi.org/10.1121/1.5021771

    Article  PubMed  Google Scholar 

  • Hildebrand JA (2009) Anthropogenic and natural sources of ambient noise in the ocean. Mar Ecol Prog Ser 395:5–20. https://doi.org/10.3354/meps08353

    Article  Google Scholar 

  • Houser DS, Finneran JJ (2006) A comparison of underwater hearing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods. J Acoust Soc Am 120:1713–1722

    Article  Google Scholar 

  • Houser DS, Gomez-Rubio A, Finneran JJ (2008) Evoked potential audiometry of 13 Pacific bottlenose dolphins (Tursiops truncatus gilli). Marine Mammal Science 24:28–41

    Article  Google Scholar 

  • Jacobs DW, Hall JD (1972) Auditory thresholds of a fresh water dolphin, inia geoffrensis blainville. J Acoust Soc Am 51:530–533. https://doi.org/10.1121/1.1912874

    Article  Google Scholar 

  • Jensen FH, Beedholm K, Wahlberg M, Bejder L, Madsen PT (2012) Estimated communication range and energetic cost of bottlenose dolphin whistles in a tropical habitat. J Acoust Soc Am 131:582–592. https://doi.org/10.1121/1.3662067

    Article  PubMed  Google Scholar 

  • Kastelein RA, Wensveen PJ, Hoek L, Au WWL, Terhune JM, Jong CAFd (2009) Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise. J Acoust Soc Am 126:1588–1597. https://doi.org/10.1121/1.3177274

    Article  PubMed  Google Scholar 

  • Kastelein RA, Helder-Hoek L, Voorde SVd (2017) Hearing thresholds of a male and a female harbor porpoise (Phocoena phocoena). J Acoust Soc Am 142:1006–1010. https://doi.org/10.1121/1.4997907

    Article  PubMed  Google Scholar 

  • Klishin VO, Popov VV, Supin AY (2000) Hearing capabilities of a beluga whale, Delphinapterus leucas. Aquatic Mammals 26:212–228

    Google Scholar 

  • Mann D, Hill-Cook M, Manire C, Greenhow D, Montie E, Powell J, Wells R, Bauer G, Cunningham-Smith P, Lingenfelser R, DiGiovanni R Jr (2010) Hearing loss in stranded odontocete dolphins and whales. PLoS ONE 5:e13824. https://doi.org/10.1371/journal.pone.0013824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Z, Zhang X, Huang SL, Zhao X, Hao Y, Zhang L, Qian Z, Zheng J, Wang K, Wang D (2014) The Yangtze finless porpoise: On an accelerating path to extinction? Biol Conserv 1(172):117–123. https://doi.org/10.1016/j.biocon.2014.02.033

    Article  Google Scholar 

  • Mooney TA, Nachtigall PE, Castellote M, Taylor KA, Pacini AF, Esteban J-A (2008) Hearing pathways and directional sensitivity of the beluga whale, Delphinapterus leucas. J Exp Mar Biol Ecol 362:108–116. https://doi.org/10.1016/j.jembe.2008.06.004

    Article  Google Scholar 

  • Mooney TA, Li S, Ketten DR, Wang K, Wang D (2011) Auditory temporal resolution and evoked responses to pulsed sounds for the Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis). J Comp Physiol A 197:1149–1158

    Article  Google Scholar 

  • Mooney TA, Li S, Ketten D, Wang K, Wang D (2014) Hearing pathways in the Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis. J Exp Biol 217:444–452. https://doi.org/10.1242/jeb.093773

    Article  PubMed  Google Scholar 

  • Mooney TA, Castellote M, Quakenbush L, Hobbs R, Gaglione E, Goertz C (2018) Variation in hearing within a wild population of beluga whales (Delphinapterus leuca). J Exp Biol. https://doi.org/10.1242/jeb.171959

    Article  PubMed  Google Scholar 

  • Nachtigall PE, Mooney TA, Taylor KA, Yuen MML (2007) Hearing and auditory evoked potential methods applied to odontocete cetaceans. Aquatic Mammals 33:6–13

    Article  Google Scholar 

  • Nachtigall PE, Mooney TA, Taylor KA, Miller LA, Rasmussen MH, Akamatsu T, Teilmann J, Linnenschmidt M, Vikingsson GA (2008) Shipboard measurements of the hearing of the white-beaked dolphin Lagenorhynchus albirostris. J Exp Biol 211(4):642–647. https://doi.org/10.1242/jeb.014118

    Article  CAS  PubMed  Google Scholar 

  • NMFS (2016) Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing: Underwater acoustic thresholds for onset of permanent and temporary threshold shifts. NOAA, Silver Spring

    Google Scholar 

  • Norris KS (1968) The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake ET (ed) Evolution and environment. Yale University Press, New York

    Google Scholar 

  • Popov VV, Supin AY (1990) Auditory brain stem responses in characterization of dolphin hearing. J Comp Physiol A 166:385–393. https://doi.org/10.1007/bf00204811

    Article  CAS  PubMed  Google Scholar 

  • Popov VV, Ladygina TF, Supin AY (1986) Evoked potentials in the auditory cortex of the porpoise, Phocoena phocoena. J Comp Physiol A 158:705–711

    Article  CAS  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang K, Xiao J, Li S (2005) Evoked-potential audiogram of the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis (L.). J Acoust Soc Am 117:2728–2731

    Article  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang K (2006) Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena and Neophocaena phocaenoides (Cetacea, Phocoenidae). J Acoust Soc Am 119:3173–3180. https://doi.org/10.1121/1.2184290

    Article  PubMed  Google Scholar 

  • Popov VV, Supin AY, Pletenko MG, Tarakanov MB, Klishin VO, Bulgakova TN, Rosanova EI (2007) Audiogram variability in normal bottlenose dolphins (Tursiops truncatus). Aquatic Mammals 33:24–33

    Article  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang K, Dong L, Wang S (2011) Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis. J Acoust Soc Am 130:574–584

    Article  Google Scholar 

  • Popov VV, Sysueva EV, Nechaev DI, Lemazina AA, Supin AY (2016) Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas). J Acoust Soc Am 140:1218–1226. https://doi.org/10.1121/1.4961014

    Article  Google Scholar 

  • Quintana-Rizzo E, Mann DA, Wells RS (2006) Estimated communication range of social sounds used by bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 120:1671–1683. https://doi.org/10.1121/1.2226559

    Article  PubMed  Google Scholar 

  • Ridgway S, Carder D (2001) Assessing hearing and sound production in cetaceans not available for behavioural audiograms: experiences with sperm, pygmy sperm and gray whales. Aquatic Mammals 27:267–276

    Google Scholar 

  • Ridgway SH, Bullock TH, Carder DA, Seeley RL, Woods D, Galambos R (1981) Auditory brainstem response in dolphins. P Natl Acad Sci USA 78:1943–1947

    Article  CAS  Google Scholar 

  • Ruser A, Dähne M, van Neer A, Lucke K, Sundermeyer J, Siebert U, Houser DS, Finneran JJ, Everaarts E, Meerbeek J, Dietz R (2016) Assessing auditory evoked potentials of wild harbor porpoises (Phocoena phocoena). J Acoust Soc Am 140(1):442–452

    Article  Google Scholar 

  • Schlundt CE, Dear RL, Green L, Houser DS, Finneran JJ (2007) Simultaneously measured behavioral and electrophysiological hearing thresholds in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 122:615–622

    Article  Google Scholar 

  • Simpson SD, Radford AN, Nedelec SL, Ferrari MCO, Chivers DP, McCormick MI, Meekan MG (2016) Anthropogenic noise increases fish mortality by predation. Nat Commun. https://doi.org/10.1038/ncomms10544

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AB, Pacini AF, Nachtigall PE (2018) Modulation rate transfer functions from four species of stranded odontocete (Stenella longirostris, Feresa attenuata, Globicephala melas, and Mesoplodon densirostris). J Comp Physiol A 204:377–389

    Article  Google Scholar 

  • Supin AY, Popov VV (1995) Envelope-following response and modulation transfer function in the dolphin's auditory system. Hear Res 92:38–46. https://doi.org/10.1016/0378-5955(95)00194-8

    Article  CAS  PubMed  Google Scholar 

  • Supin AY, Popov VV (2007) Improved techniques of evoked-potential audiometry in odontocetes. Aquatic Mammals 33:14–23

    Article  Google Scholar 

  • Supin AV, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer academic publishers, New York

    Book  Google Scholar 

  • Sysueva EV, Nechaev DI, Popov VV, Supin AY (2018) Electrophysiological audiograms in seven beluga whales (Delphinapterus leucas) from the Okhotsk Sea population. Proc Meet Acoust 33:010001. https://doi.org/10.1121/2.0000807

    Article  Google Scholar 

  • Szymanski MD, Bain DE, Kiehl K, Pennington S, Wong S, Henry KR (1999) Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms. J Acoust Soc Am 106:1134–1141. https://doi.org/10.1121/1.427121

    Article  CAS  PubMed  Google Scholar 

  • Turvey ST, Pitman RL, Taylor BL, Barlow J, Akamatsu T, Barrett LA, Zhao X, Reeves RR, Stewart BS, Wang K, Wei Z (2007) First human-caused extinction of a cetacean species? Biol Lett 3(5):537–540

    Article  Google Scholar 

  • Varanasi U, Malins DC (1972) Triacylglycerols characteristic of porpoise acoustic tissues: molecular structures of diisovaleroylglycerides. Science 176:926–928

    Article  CAS  Google Scholar 

  • Wahlberg M, Delgado-García L, Kristensen JH (2017) Precocious hearing in harbour porpoise neonates. J Comp Physiol A 203:121–132. https://doi.org/10.1007/s00359-017-1145-0

    Article  Google Scholar 

  • Wang D (2009) Population status, threats and conservation of the Yangtze finless porpoise. Chin Sci Bull 54:3473–3484

    CAS  Google Scholar 

  • Wang D, Wang K, Xiao Y, Sheng G (1992) Auditory sensitivity of a chinese river dolphin. Lipotes Vexillifer Springer, Boston

    Google Scholar 

  • Wang D, Turvey ST, Zhao X, Mei Z (2013) Neophocaena asiaeorientalis Ssp. asiaeorientalis. Accessed 9 Nov 2013.

  • Wang Z-T, Akamatsu T, Wang K-X, Wang D (2014) The diel rhythms of biosonar behavior in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the port of the Yangtze River: The correlation between prey availability and boat traffic. PLoS ONE 9:e97907. https://doi.org/10.1371/journal.pone.0097907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z-T, Akamatsu T, Mei Z-G, Dong L-j, Imaizumi T, Wang K-X, Wang D (2015) Frequent and prolonged nocturnal occupation of port areas by Yangtze finless porpoises (Neophocaena asiaeorientalis): forced choice for feeding? Integr Zool 10:122–132

    Article  Google Scholar 

  • Wang ZT, Au WW, Rendell L, Wang KX, Wu HP, Wu YP, Liu JC, Duan GQ, Cao HJ, Wang D (2016) Apparent source levels and active communication space of whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in the Pearl River Estuary and Beibu Gulf, China. Peer J 15(4):e1695

    Article  Google Scholar 

  • Wang ZT, Akamatsu T, Duan PX, Zhou L, Yuan J, Li J, Lei PY, Chen YW, Yang YN, Wang KX, Wang D (2020) Underwater noise pollution in China’s Yangtze River critically endangers Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). Environ Pollut 2:114310. https://doi.org/10.1016/j.envpol.2020.114310

    Article  CAS  Google Scholar 

  • Wells RS, Rhinehart HL, Hansen LJ, Sweeney JC, Townsend FI, Stone R, Casper DR, Scott MD, Hohn AA, Rowles TK (2004) Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 1(3):246–254

    Article  Google Scholar 

  • Yuen MML, Nachtigall PE, Breese M, Supin AY (2005) Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 118:2688–2695. https://doi.org/10.1121/1.2010350

    Article  PubMed  Google Scholar 

  • Zhang X (1992) Studies on the age determination, growth and reproduction of finless porpoise Neophocaena phocaenoides. Acta Hydrobiol Sin 16:289–298

    Google Scholar 

Download references

Acknowledgements

Grants for this study were provided by the National Natural Science Foundation of China (NSFC) to Zhi-Tao Wang (Grant No. 41806197), Ding Wang (Grant No. 31070347) and Ke-Xiong Wang (Grant No. 31170501). We are grateful to Bing-Fang Yu of the Institute of Hydrobiology of the Chinese Academy of Sciences, Dao-Bin Gao of the Tian-E-Zhou National Baiji Conservation Reserve and fishers from Duchang County for their valuable support and assistance during porpoise capture and auditory data collection. Special thanks are also extended to the academic editor and two anonymous reviewers for their helpful critique of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ZTW, KXW and DW conceived and designed the experiments. ZTW, JL, PXD, KXW and DW conducted the experiments. ZTW and AYS analysed and interpreted the data. ZTW, JL, PXD, ZGM, FQN, TA, PYL, LZ, JY, YWC, AYS, KXW and DW drafted and revised the manuscript. All authors have read and approved the final manuscript for publication.

Corresponding author

Correspondence to Ke-Xiong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This research followed a protocol approved by the Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs of the People's Republic of China (ID no. Y81Z211). The care and use of animals were consistent with China’s Wildlife Protection Act, 1989, Implementation By-law on Aquatic Wildlife Conservation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZT., Li, J., Duan, PX. et al. Evoked-potential audiogram variability in a group of wild Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). J Comp Physiol A 206, 527–541 (2020). https://doi.org/10.1007/s00359-020-01426-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-020-01426-6

Keywords

Navigation