Skip to main content
Log in

The plus maze and scototaxis test are not valid behavioral assays for anxiety assessment in the South African clawed frog

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

There are no behavioral models for testing anxiety in amphibians, a group of animals widely used for developmental, ecotoxicological, and genetic research. We aimed to validate two common rodent paradigms, the plus maze and the scototaxis test, for use in the aquatic African clawed frog (Xenopus laevis). We predicted: (a) that frogs would prefer the dark, vs. light, portions of the testing arenas (face validity), (b) that this behavior could be altered with acute administration of anxio-selective drugs (construct validity), and (c) that time spent in the dark portions of the arenas would be positively correlated (predictive validity). Prior to testing, frogs were treated with fluoxetine (selective serotonin reuptake inhibitor [SSRI]), desipramine (serotonin- and norepinephrine-reuptake inhibitor), caffeine (methylxanthine, adenosine receptor antagonist, phosphodiesterase inhibitor), saline, or were left unmanipulated. Each drug was administered acutely (1 h prior to testing; caffeine) or subacutely (24, 3, and 1 h prior to testing; fluoxetine, desipramine) at one of three doses. Plus maze and scototaxis testing were separated by 1 week; each frog completed both behavioral tasks and was treated with the same drug regimen prior to testing. Overall, both tests showed face validity, however, data suggest these paradigms lack both construct and predictive validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PPCP:

Pharmaceutical and personal care product

RDoC:

Research Domain Criteria

SSRI:

Selective serotonin reuptake inhibitor

TCA:

Tricyclic antidepressant

References

  • Adhikari A (2014) Distributed circuits underlying anxiety. Front Behav Neurosci 8:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderzhanova E, Kirmeier T, Wotjak CT (2017) Animal models in psychiatric research: the RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 7:47–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaufour CC, Ballon N, Le Bihan C, Hamon M, Thiébot MH (1999) Effects of chronic antidepressants in an operant conflict procedure of anxiety in the rat. Pharmacol Biochem Behav 62(4):591–599

    Article  CAS  PubMed  Google Scholar 

  • Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125(1–2):141–149

    Article  CAS  PubMed  Google Scholar 

  • Belzung C, Lemoine M (2011) Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord 1(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, Bollen KA, Brembs B, Brown L, Camerer C, Cesarini D, Chambers CD, Clyde M, Cook TD, De Boeck P, Dienes Z, Dreber A, Easwaran K, Efferson C, Fehr E, Fidler F, Field AP, Forster M, George EI, Gonzalez R, Goodman S, Green E, Green DP, Greenwald A, Hadfield JD, Hedges LV, Held L, Hau Ho T, Hoijtink H, Hruschka DJ, Imai K, Imbens G, Loannidis JPA, Jeon M, Holland Jones J, Kirchler M, Laibson D, List J, Little R, Lupia A, Machery E, Maxell SE, McCarthy M, Moore S, Morgan SL, Munafo M, Nakagawa S, Nyhan B, Parker TH, Pericchi L, Perugini M, Rouder J, Rousseau J, Savalei V, Schonbrodt FD, Sellke T, Sinclair B, Tingley D, Van Zandt T, Vazire S, Watts DJ, Winship C, Wolpert RL, Xie Y, Young C, Zinman J, Johnson VE (2018) Redefine statistical significance. Nat Hum Behav 2(1):6–10

    Article  PubMed  Google Scholar 

  • Berg C, Backström T, Winberg S, Lindberg R, Brandt I (2013) Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus. PLoS ONE 8(1):e55053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard DC, Summers CH, Blanchard RJ (2013) The role of behavior in translational models for psychopathology: functionality and dysfunctional behaviors. Neurosci Biobehav Rev 37(8):1567–1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaser RE, Rosemberg DB (2012) Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS ONE 7(5):e36931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). BehavBrain Res 208(1):56–62

    CAS  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacol 163(2):121–141

    Article  CAS  Google Scholar 

  • Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463(1–3):55–65

    Article  CAS  PubMed  Google Scholar 

  • Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339(6121):814–815

    Article  CAS  PubMed  Google Scholar 

  • Brooks BW (2014) Fish on Prozac (and Zoloft): ten years later. Aquatic Toxicol 151:61–67

    Article  CAS  Google Scholar 

  • Carhart-Harris RL, Roseman L, Haijen E, Erritzoe D, Watts R, Branchi I, Kaelen M (2018) Psychedelics and the essential importance of context. J Psychopharmacol 32(7):725–731

    Article  PubMed  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29(8):1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Carr JA (2015) I’ll take the low road: the evolutionary underpinnings of visually triggered fear. Front Neurosci 9:414

    PubMed  PubMed Central  Google Scholar 

  • Carr JA, Gentles A, Smith EE, Goleman WL, Urquidi LJ, Thuett K, Kendall RJ, Giesy JP, Gross TS, Solomon KR, Van Der Kraak G (2003) Response of larval Xenopus laevis to atrazine: assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environ Toxicol Chem 22(2):396–405

    Article  CAS  PubMed  Google Scholar 

  • Channing AC (2001) Amphibians of central and Southern Africa. Protea House, Pretoria, p 470

    Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE (1984) Serotonin function and mechanism of action of antidepressant treatment: effects of amitriptyline and desipramine. Arch Gen Psychiatry 41(4):359–365

    Article  CAS  PubMed  Google Scholar 

  • Clinchy M, Schulkin J, Zanette LY, Sheriff MJ, McGowan PO, Boonstra R (2011) The neurological ecology of fear: insights neuroscientists and ecologists have to offer one another. Front Behav Neurosci 5:21

    PubMed Central  Google Scholar 

  • Clinchy M, Sheriff MJ, Zanette LY (2013) Predator-induced stress and the ecology of fear. Funct Ecol 27(1):56–65

    Article  Google Scholar 

  • Correa M, Font L (2008) Is there a major role for adenosine A2A receptors in anxiety. Front Biosci 13:4058–4070

    Article  CAS  PubMed  Google Scholar 

  • Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Dis Primers 3:17100

    Article  PubMed  Google Scholar 

  • Cregg R, Russo G, Gubbay A, Branford R, Sato H (2013) Pharmacogenetics of analgesic drugs. Br J Pain 7(4):189–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthbert BN, Insel TR (2013) Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 11(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly JW, Shi D, Nikodijevic O, Jacobson KA (1994) The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 7(2):201

    PubMed  PubMed Central  Google Scholar 

  • Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51(1):68–80

    Article  PubMed  Google Scholar 

  • Duggan PE, Prater C, Carr JA, Harris BN (2016) Predator presence decreases food consumption in juvenile Xenopus laevis. Behav Ecol Sociobio 70(12):2005–2015

    Article  Google Scholar 

  • Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205(1):38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ennaceur A (2014) Tests of unconditioned anxiety—pitfalls and disappointments. Physiol Behav 135:55–71

    Article  CAS  PubMed  Google Scholar 

  • File SE (1991) The biological basis of anxiety. In: Meltzer HY, Nerozzi D (eds) Current practices and future developments in the pharmacotherapy of mental disorders. Elsevier Publishing, Amsterdam, pp 159–165

    Google Scholar 

  • Fossat P, Bacqué-Cazenave J, De Deurwaerdère P, Delbecque JP, Cattaert D (2014) Anxiety-like behavior in crayfish is controlled by serotonin. Science 344(6189):1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Foxon GEH, Rowson KEK (1956) The fate of ‘Thorotrast’ (thorim dioxide) injected into the dorsal lymph sac of the frog, Rana temporaria. Q J Microscop Sci 3(37):47–57

    Google Scholar 

  • Gaetani S, Cuomo V, Piomelli D (2003) Anandamide hydrolysis: a new target for anti-anxiety drugs? Trends in Mol Medicine 9(11):474–478

    Article  CAS  Google Scholar 

  • Gendron A (2013) Amphibian ecotoxicology. In: Férard JF, Blaise C (eds) Encyclopedia of aquatic ecotoxicology. Springer, Dordrecht

    Google Scholar 

  • Goswami S, Rodríguez-Sierra O, Cascardi M, Paré D (2013) Animal models of post-traumatic stress disorder: face validity. Front Neurosci 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Thers 65(3):319–395

    Article  CAS  Google Scholar 

  • Griebel G, Holmes A (2013) 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Dis 12(9):667–687

    Article  CAS  Google Scholar 

  • Harris BN, Carr JA (2016) The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol 230:110–142

    Article  CAS  PubMed  Google Scholar 

  • Harris BN, Hohman ZP, Campbell CM, King KS, Tucker CA (2019) FAAH genotype, CRFR1 genotype, and cortisol interact to predict anxiety in an aging, rural Hispanic population: a Project FRONTIER study. Neurobiol Stress 10:100154

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman EJ, Mathew SJ (2008) Anxiety disorders: a comprehensive review of pharmacotherapies. Mount Sinai JJ Medicine: A J TranslPers Medicine 75(3):248–262

    Article  Google Scholar 

  • Hopkins WA (2007) Amphibians as models for studying environmental change. ILAR J 48(3):270–277

    Article  CAS  PubMed  Google Scholar 

  • Hughes RN, Hancock NJ, Henwood GA, Rapley SA (2014) Evidence for anxiolytic effects of acute caffeine on anxiety-related behavior in male and female rats tested with and without bright light. Behav Brain Res 271:7–15

    Article  CAS  PubMed  Google Scholar 

  • Insel TR (2014) The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 171(4):395–397

    Article  PubMed  Google Scholar 

  • Jain N, Kemp N, Adeyemo O, Buchanan P, Stone TW (1995) Anxiolytic activity of adenosine receptor activation in mice. Br J Pharmacol 116(3):2127–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James JE (1997) Understanding caffeine: a biobehavioral analysis. Sage Publications, Beverley Hills

    Google Scholar 

  • Jesuthasan S (2012) Fear, anxiety, and control in the zebrafish. Devel Neurobiol 72(3):395–403

    Article  Google Scholar 

  • Kalueff AV, Stewart AM, Kyzar EJ, Cachat J, Gebhardt M, Landsman S (2012) International Zebrafish Neuroscience Research Consortium. Time to recognize zebrafish ‘affective’ behavior. Behaviour 149(10–12):1019–1036

    Google Scholar 

  • Kelleher SR, Silla AJ, Byrne PG (2018) Animal personality and behavioral syndromes in amphibians: a review of the evidence, experimental approaches, and implications for conservation. Behav Ecol Sociobiol 72(5):79

    Article  Google Scholar 

  • Kshama D, Hrishikeshavan HJ, Shanbhogue R, Munonyedi US (1990) Modulation of baseline behavior in rats by putative serotonergic agents in three ethoexperimental paradigms. Behav Neural Biol 54(3):234–253

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Bhat ZA, Kumar D (2013) Animal models of anxiety: a comprehensive review. J Pharmacol Toxicol Methods 68(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Kurt M, Arik AC, Celik S (2000) The effects of sertraline and fluoxetine on anxiety in the elevated plus-maze test. J Basic Clin Physiol Pharmacol 11(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Lampis V, Maziade M, Battaglia M (2011) Animal models of human anxiety disorders: reappraisal from a developmental psychopathology vantage point. Pediatric Res 69(5 Pt 2):77R–84R

    Article  Google Scholar 

  • Lembke A, Papac J, Humphreys K (2018) Our other prescription drug problem. N Eng J Med 378(8):693–695

    Article  Google Scholar 

  • Lister RG (1990) Ethologically-based animal models of anxiety disorders. Pharmacol Ther 46(3):321–340

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Kariya MJ, Chute CD, Pribadi AK, Leinwand SG, Tong A, Curran KP, Bose N, Schroeder FC, Srinivasan J, Chalasani SH (2018) Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat Commun 9(1):1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loonen AJ, Ivanova SA (2015) Circuits regulating pleasure and happiness: the evolution of reward-seeking and misery-fleeing behavioral mechanisms in vertebrates. Front Neurosci 9:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8(4):233–246

    Article  CAS  PubMed  Google Scholar 

  • Mansouri MT, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A (2014) A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav 117:40–46

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K, Hagiwara Y, Shibata H, Sakashita A, Wada K (2013) Ovine corticotropin-releasing hormone (oCRH) exerts an anxiogenic-like action in the goldfish, Carassius auratus. Gen Comp Endocrinol 188:118–122

    Article  CAS  PubMed  Google Scholar 

  • Maximino C, Marques T, Dias F, Cortes FV, Taccolini IB, Pereira PM, Colmanetti R, Lozano R, Gazolla RA, Tenoria R, Tavares de Lacerda RI, Rodrigues STK, de Oliveira Valéria, Coelho Lameirao S, Pontes AAA, Romao CF, Prado VM, Gouveia A (2007) A comparative analysis of the preference for dark environments in five teleosts. Int J Comp Psychol 20(4):351–367

    Google Scholar 

  • Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A (2010a) Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214(2):157–171

    Article  PubMed  Google Scholar 

  • Maximino C, de Brito TM, Colmanetti R, Pontes AAA, de Castro HM, de Lacerda RIT, Morato S, Gouveia A Jr (2010b) Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res 210(1):1–7

    Article  PubMed  Google Scholar 

  • Maximino C, de Brito TM, de Mattos Dias CAG, Gouveia A Jr, Morato S (2010c) Scototaxis as anxiety-like behavior in fish. Nat Protoc 5(2):209

    Article  CAS  PubMed  Google Scholar 

  • Maximino C, da Silva AWB, Gouveia A, Herculano AM (2011) Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog Neuro-Psychopharmacol Biolo Psychiatry 35(2):624–631

    Article  CAS  Google Scholar 

  • Maximino C, Benzecry R, Oliveira KRM, de Batista OBE, Herculano AM, Rosemberg DB, de Oliveira DL, Blaser R (2012) A comparison of the light/dark and novel tank tests in zebrafish. Behaviour 149(10–12):1099–1123

    Article  Google Scholar 

  • McNaughton N, Zangrossi H (2008) Theoretical approaches to the modeling of anxiety in animals. In: Blanchard DC, Griebel G, Nutt DJ (eds) Handbook of anxiety and fear, vol 17. Elsevier Publishing, Amsterdam, pp 11–27

    Chapter  Google Scholar 

  • Measey GJ (1998) Diet of feral Xenopus laevis (Daudin) in South Wales, UK. J Zool 246(3):287–298

    Article  Google Scholar 

  • Morris A, Green M, Martin H, Crossland K, Swaney WT, Williamson SM, Rae R (2018) A nematode that can manipulate the behaviour of slugs. Behav Process 151:73–80

    Article  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10):1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill SJ, Williamso JE, Tosetto L, Brown C (2018) Effects of acclimatisation on behavioural repeatability in two behaviour assays of the guppy Poecilia reticulata. Behav Ecol Sociobiol 72(10):166

    Article  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  • Perusini JN, Fanselow MS (2015) Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem 22(9):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prater CM, Harris BN, Carr JA (2018) Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis. Horm Behav 105:86–94

    Article  CAS  PubMed  Google Scholar 

  • Ramos A (2008) Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci 29(10):493–498

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Berton O, Mormède P, Chaouloff F (1997) A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav Brain Res 85(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Mellerin Y, Mormede P, Chaouloff F (1998) A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses. Behav Brain Res 96(1–2):195–205

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Pereira E, Martins GC, Wehrmeister TD, Izídio GS (2008) Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav Brain Res 193(2):277–288

    Article  PubMed  Google Scholar 

  • Ren J, Friedmann D, Xiong J, Liu CD, DeLoach KE, Ran C, Pu A, Sun Y, Weissbourd B, Neve RL, Horowtiz M, Luo L (2018) Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175(2):472–487. https://doi.org/10.1016/j.cell.2018.07.043

  • Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10(9):1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richendrfer H, Pelkowski SD, Colwill RM, Creton R (2012) On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res 228(1):99–106

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Medical Bioll Res 30:289–304

    Article  CAS  Google Scholar 

  • Rosenthal R (1994) Parametric measures of effect size. In: Cooper H, Hedges LV (eds) The handbook of research synthesis. Russell Sage Foundation, New York, pp 231–244

    Google Scholar 

  • Rotzinger S, Lovejoy DA, Tan LA (2010) Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides 31(4):736–756

    Article  CAS  PubMed  Google Scholar 

  • Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol 23(1):43

    PubMed  PubMed Central  Google Scholar 

  • Shin JT, Fishman MC (2002) From zebrafish to human: modular medical models. Ann Rev Genom Hum Genet 3(1):311–340

    Article  CAS  Google Scholar 

  • Silva LJ, Lino CM, Meisel LM, Pena A (2012) Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment: an ecopharmacovigilance approach. Sci Total Environ 437:185–195

    Article  CAS  PubMed  Google Scholar 

  • Simmons DBD, McCallum ES, Balshine S, Chandramouli B, Cosgrove J, Sherry JP (2017) Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius auratus. Sci Rep 7(1):17001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Smith A (2002) Effects of caffeine on human behavior. Food Chem Toxicol 40(9):1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Sokolowski K, Corbin JG (2012) Wired for behaviors: from development to function of innate limbic system circuitry. Front Mol Neurosci 5:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommi RW, Crismon ML, Bowden CL (1987) Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacother J Hum Pharmacol Drug Ther 7(1):1–14

    Article  CAS  Google Scholar 

  • Steimer T (2011) Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialog Clin Neurosci 13(4):495–506

    Google Scholar 

  • Stewart AM, Kalueff AV (2015) Developing better and more valid animal models of brain disorders. Behav Brain Res 276:28–31

    Article  PubMed  Google Scholar 

  • Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carols D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV (2011a) Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuro-Psychopharmacol Biol Psychiatry 35(6):1421–1431

    Article  CAS  Google Scholar 

  • Stewart A, Maximino C, De Brito TM, Herculano AM, Gouveia A, Morato S, Cachet JM, Gaikwad S, Elegante MF, Hart PC, Kalueff AV (2011b) Neurophenotyping of adult zebrafish using the light/dark box paradigm. In: Kalueff AV, Cachat J (eds) Zebrafish neurobehavioral protocols. Humana Press, Clifton, pp 157–167

    Chapter  Google Scholar 

  • Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV (2012) Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacol 62(1):135–143

    Article  CAS  Google Scholar 

  • Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV (2014) Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37(5):264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon P, Conlon F, Furlow JD, Horb ME (2016) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Devel Biol 426(2):325–335

    Article  CAS  Google Scholar 

  • Tierney AJ (2018) Invertebrate serotonin receptors: a molecular perspective on classification and pharmacology. J Exp Biol 221(19):jeb184838

    Article  PubMed  Google Scholar 

  • Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16(6):317–331

    Article  CAS  PubMed  Google Scholar 

  • Treit D, Engin E, McEown K (2009) Animal models of anxiety and anxiolytic drug action. Behavioral neurobiology of anxiety and its treatment. Springer, Berlin, pp 121–160

    Chapter  Google Scholar 

  • Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacol 111(3):323–331

    Article  CAS  Google Scholar 

  • van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Mier P, Joosten HWJ, Van Rheden R, Ten Donkelaar HJ (1986) The development of serotonergic raphespinal projections in Xenopus laevis. Int J Devel Neurosci 4(5):465–475

    Article  Google Scholar 

  • Varty GB, Morgan CA, Cohen-Williams ME, Coffin VL, Carey GJ (2002) The gerbil elevated plus-maze I: behavioral characterization and pharmacological validation. Neuropsychopharmacol 27(3):357–370

    Article  CAS  Google Scholar 

  • Vendruscolo LF, Takahashi RN, Brüske GR, Ramos A (2003) Evaluation of the anxiolytic-like effect of NKP608, a NK1-receptor antagonist, in two rat strains that differ in anxiety-related behaviors. Psychopharmacol 170(3):287–293

    Article  CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments. Naunyn-Schmiedeberg’s Archi Pharmacol 293(2):109–114

    Article  CAS  Google Scholar 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Prot 2(2):322

    Article  CAS  Google Scholar 

  • Williams TD (2008) Individual variation in endocrine systems: moving beyond the ‘tyranny of the Golden Mean’. Philos Trans R Soc Lond B Biol Sci 363(1497):1687–1698

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacol 83(1):1–16

    Article  CAS  Google Scholar 

  • Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, Goodspeed J, Suciu C, Tan J, Grimes C, Chung A, Rosenberg M, Gaikwad S, Denmark A, Jackson A, Kadri F, Chung KM, Stewart S, Glider T, Beeson E, Zapolsky I, Wu N, Cachat J, Kalueff AV (2010) Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 208(2):450–457

    Article  CAS  PubMed  Google Scholar 

  • Zohar J, Westenberg HGM (2000) Anxiety disorders: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatr Scand 101(S403):39–49

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Paul Duggan, Rebekah Salinas, Christian Thomas, and Dr. Kurt Caswell for their help on this project. We would also like to thank the Texas Tech Honors College (Undergraduate Research Scholar program) and the NSF-funded PRISM program (www.math.ttu.edu/outreach/prism) for supporting RBC. We especially thank the PRISM PIs (Drs. G. Brock Williams, Sophia Jang, Nancy McIntyre, Jaclyn Canas-Carrell, and Jerry Dwyer), Jessica Spott, Lori Lightfoot, and Jerylme Robins for their support. All applicable international, national, and Texas Tech University Institutional Animal Care and Use Committee (IACUC) guidelines were followed. Texas Tech University is Association for Assessment and Accreditation of Laboratory Animal Care accredited. We also thank two anonymous reviewers for their helpful and constructive comments on a previous version of this manuscript, their comments no doubt improved the final product.

Funding

This work was partially supported by the National Science Foundation under Grant Nos. 1035096 (PRISM) and 1656734 (IOS, awarded to JAC and BNH), and by the Texas Tech University (TTU) Center for Active Learning and Undergraduate Engagement (now TrUE). This project was conducted for the fulfillment of R. Boone Coleman’s Honor’s Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breanna N. Harris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, R.B., Aguirre, K., Spiegel, H.P. et al. The plus maze and scototaxis test are not valid behavioral assays for anxiety assessment in the South African clawed frog. J Comp Physiol A 205, 567–582 (2019). https://doi.org/10.1007/s00359-019-01351-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-019-01351-3

Keywords

Navigation