Journal of Comparative Physiology A

, Volume 205, Issue 4, pp 537–552 | Cite as

Long-range neural inhibition and stimulus competition in the archerfish optic tectum

  • Svetlana Volotsky
  • Ehud Vinepinsky
  • Opher Donchin
  • Ronen SegevEmail author
Original Paper


The archerfish, which is unique in its ability to hunt insects above the water level by shooting a jet of water at its prey, operates in a complex visual environment. The fish needs to quickly select one object from among many others. In animals other than the archerfish, long-range inhibition is considered to drive selection. As a result of long-range inhibition, a potential target outside a neuron’s receptive field suppresses the activity elicited by another potential target within the receptive field. We tested whether a similar mechanism operates in the archerfish by recording the activity of neurons in the optic tectum while presenting a target stimulus inside the receptive field and a competing stimulus outside the receptive field. We held the features of the target constant while varying the size, speed, and distance of the competing stimulus. We found cells that exhibit long-range inhibition; i.e., inhibition that extends to a significant part of the entire visual field of the animal. The competing stimulus depressed the firing rate. In some neurons, this effect was dependent on the features of the competing stimulus. These findings suggest that long-range inhibition may play a crucial role in the target selection process in the archerfish.


Archerfish Electrophysiology Neural inhibition Stimulus competition Selection 



We thank Gustavo Glusman for technical assistance.


This research was supported by the Israel Science Foundation (Grant No. 211/15), and the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initiative of Ben-Gurion University of the Negev.

Compliance with ethical standard

Competing interests

No competing interests declared.


  1. Allman J, Miezin F, McGuinness E (1985) Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14:105–126. CrossRefPubMedGoogle Scholar
  2. Bass A (1977) Effects of lesions of the optic tectum on the ability of turtles to locate food stimuli. Brain Behav Evol 14:251–260. CrossRefPubMedGoogle Scholar
  3. Ben-Simon A, Ben-Shahar O, Vasserman G (2012) Visual acuity in the archerfish: behavior, anatomy, and neurophysiology. J Vision 12:18. CrossRefGoogle Scholar
  4. Ben-Tov M, Kopilevich I, Donchin O et al (2013) Visual receptive field properties of cells in the optic tectum of the archer fish. J Neurophysiol 110:748–759. CrossRefPubMedGoogle Scholar
  5. Ben-Tov M, Donchin O, Ben-Shahar O, Segev R (2015) Pop-out in visual search of moving targets in the archer fish. Nat Commun. CrossRefPubMedGoogle Scholar
  6. Bodznick D (1990) Elasmobranch vision: multimodal integration in the brain. J Exp Zool 256:108–116. CrossRefGoogle Scholar
  7. Carello C, Krauzlis R (2004) Manipulating Intent: evidence for a causal role of the superior colliculus in target selection. Neuron 43:575–583. CrossRefPubMedGoogle Scholar
  8. Chelazzi L, Miller E, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature 363:345–347. CrossRefPubMedGoogle Scholar
  9. Denwood MJ (2016) runjags: an R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J Stat Softw. CrossRefGoogle Scholar
  10. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222. CrossRefGoogle Scholar
  11. Dudkin EA, Peiffer T, Burkitt B et al (2011) Leopard frog priorities in choosing between prey at different locations. Behav Proc 86:138–142. CrossRefGoogle Scholar
  12. Dunn T, Gebhardt C, Naumann E et al (2016) Neural Circuits underlying visually evoked escapes in larval zebrafish. Neuron 89:613–628. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ekström P (1987) Distribution of choline acetyltransferase-immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinusL.). J Comp Neurol 256:494–515. CrossRefPubMedGoogle Scholar
  14. Fecteau J, Munoz D (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10:382–390. CrossRefGoogle Scholar
  15. Fleishman L (1986) Motion detection in the presence and absence of background motion in an Anolis lizard. J Comp Physiol A 159:711–720. CrossRefPubMedGoogle Scholar
  16. Gabay S, Leibovich T, Ben-Simon A et al (2013) Inhibition of return in the archer fish. Nat Commun 4:1657. CrossRefPubMedGoogle Scholar
  17. Herrero L, Rodríguez F, Salas C, Torres B (1998) Tail and eye movements evoked by electrical microstimulation of the optic tectum in goldfish. Exp Brain Res 120:291–305. CrossRefPubMedGoogle Scholar
  18. Houghton G, Tipper S (1996) Inhibitory mechanisms of neural and cognitive control: applications to selective attention and sequential action. Brain Cogn 30:20–43. CrossRefPubMedGoogle Scholar
  19. Ingle D (1973) Selective choice between double prey objects by frogs. Brain Behav Evol 7:127–144. CrossRefPubMedGoogle Scholar
  20. Kardamakis A, Saitoh K, Grillner S (2015) Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc Natl Acad Sci 112:E1956–E1965. CrossRefPubMedGoogle Scholar
  21. Karoubi N, Segev R, Wullimann MF (2016) The brain of the archerfish toxotes chatareus: a nissl-based neuroanatomical atlas and catecholaminergic/cholinergic systems. Front Neuroanat. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kastner S (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111. CrossRefPubMedGoogle Scholar
  23. Knierim JJ, Essen DCV (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67:961–980. CrossRefPubMedGoogle Scholar
  24. Kostyk S, Grobstein P (1982) Visual orienting deficits in frogs with various unilateral lesions. Behav Brain Res 6:379–388. CrossRefPubMedGoogle Scholar
  25. Krauzlis R, Dill N (2002) Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron 35:355–363. CrossRefPubMedGoogle Scholar
  26. Krauzlis R, Bogadhi A, Herman J, Bollimunta A (2018) Selective attention without a neocortex. Cortex. CrossRefPubMedGoogle Scholar
  27. Kruschke J (2014) Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan. Academic Press, CambridgeGoogle Scholar
  28. Lewicki M (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Netw Comput Neural Syst. CrossRefGoogle Scholar
  29. Lüling KH (1958) Morphologisch-Anatomische und Histologische untersuchungen am auge des Schützenfisches Toxotes Jaculatrix (Pallas 1766) (Toxotidae) nebst Bemerkungen zum Spuckgehaben. H. Stürtz AG. (Würzburg)Google Scholar
  30. Lüling K (1963) The archer fish. Sci Am 209:100–109. CrossRefGoogle Scholar
  31. Marin G, Salas C, Sentis E et al (2007) A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon. J Neurosci 27:8112–8121. CrossRefPubMedGoogle Scholar
  32. Marois R, Ivanoff J (2005) Capacity limits of information processing in the brain. Trends Cogn Sci 9:296–305. CrossRefPubMedGoogle Scholar
  33. McPeek R, Keller E (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763. CrossRefPubMedGoogle Scholar
  34. Miller E, Gochin P, Gross C (1993) Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Res 616:25–29. CrossRefPubMedGoogle Scholar
  35. Mokeichev A, Segev R, Ben-Shahar O (2010) Orientation saliency without visual cortex and target selection in archer fish. Proc Natl Acad Sci 107:16726–16731. CrossRefPubMedGoogle Scholar
  36. Mysore S, Knudsen E (2011) The role of a midbrain network in competitive stimulus selection. Curr Opin Neurobiol 21:653–660. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mysore S, Asadollahi A, Knudsen E (2010) Global inhibition and stimulus competition in the owl optic tectum. J Neurosci 30:1727–1738. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mysore S, Asadollahi A, Knudsen E (2011) Signaling of the strongest stimulus in the owl optic tectum. J Neurosci 31:5186–5196. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Newport C, Wallis G, Reshitnyk Y, Siebeck U (2016) Discrimination of human faces by archerfish (Toxotes chatareus). Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nummela S, Krauzlis R (2010) Inactivation of primate superior colliculus biases target choice for smooth pursuit, saccades, and button press responses. J Neurophysiol 104:1538–1548. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Passaglia CL, Enroth-Cugell C, Troy JB (2001) Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. J Neurosci 15:5794–5803. CrossRefGoogle Scholar
  42. Plotkin A, Paperno E, Vasserman G, Segev R (2008) Magnetic tracking of eye motion in small, fast-moving animals. IEEE Trans Magn 44:4492–4495. CrossRefGoogle Scholar
  43. Port NL, Wurtz RH (2009) Target selection and saccade generation in monkey superior colliculus. Exp Brain Res 192:465–477. CrossRefPubMedGoogle Scholar
  44. R Development Core Team (2018) R: a language and environment for statistical computing. R version 3.4.4. R Foundation for Statistical Computing, Vienna.
  45. Reichenthal A, Ben-Tov M, Segev R (2018) Coding schemes in the archerfish optic tectum. Front Neural Circuits. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Reynolds J, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque Areas V2 and V4. J Neurosci 19:1736–1753. CrossRefPubMedGoogle Scholar
  47. Rizzolatti G, Camarda R, Grupp L, Pisa M (1974) Inhibitory effect of remote visual stimuli on visual responses of cat superior colliculus: spatial and temporal factors. J Neurophysiol 37:1262–1275. CrossRefPubMedGoogle Scholar
  48. Schuster S, Rossel S, Schmidtmann A et al (2004) Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Curr Biol 14:1565–1568. CrossRefPubMedGoogle Scholar
  49. Segev R, Goodhouse J, Puchalla J, Berry MJ (2004) Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci 7:1155–1162. CrossRefGoogle Scholar
  50. Solomon SG, Lee BB, Sun H (2006) Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque. J Neurosci 34:8715–8726. CrossRefGoogle Scholar
  51. Spiegelhalter DJ, Best NG, Carlin BP, Linde AVD (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B (Stat Methodol 64:583–639. CrossRefGoogle Scholar
  52. Temizer I, Donovan J, Baier H, Semmelhack J (2015) A visual pathway for looming-evoked escape in larval zebrafish. Curr Biol 25:1823–1834. CrossRefPubMedGoogle Scholar
  53. Tsotsos J (1990) Analyzing vision at the complexity level. Behav Brain Sci 13:423–445. CrossRefGoogle Scholar
  54. Tsvilling V, Donchin O, Shamir M, Segev R (2012) Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells. Eur J Neurosci 35:436–444. CrossRefPubMedGoogle Scholar
  55. Vasserman G, Shamir M, Ben Simon A, Segev R (2010) Coding “What” and “When” in the Archer Fish Retina. PLoS Comput Biol 6:e1000977. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zahar Y, Lev-Ari T, Wagner H, Gutfreund Y (2018) Behavioral evidence and neural correlates of perceptual grouping by motion in the barn owl. J Neurosci 38:6653–6664. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Department of Life SciencesBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations