Advertisement

Journal of Comparative Physiology A

, Volume 205, Issue 2, pp 203–210 | Cite as

Effect of the algal alkaloid caulerpin on neuropeptide Y (NPY) expression in the central nervous system (CNS) of Diplodus sargus

  • Laura MagliozziEmail author
  • Valeria Maselli
  • Frederico Almada
  • Anna Di Cosmo
  • Ernesto Mollo
  • Gianluca PoleseEmail author
Original Paper
  • 130 Downloads

Abstract

Recent studies have suggested that Mediterranean indigenous fish species are affected by bioactive metabolites coming from marine invasive species via food web interactions. In particular, both physiological and behavioural changes in the white sea bream Diplodus sargus were related to caulerpin (CAU), a bisindolic alkaloid particularly abundant in the invasive alga Caulerpa cylindracea, on which the fish actively feed. Dietary administration of CAU decreased aggressiveness in D. sargus, suggesting an anxiolytic-like effect of CAU possibly mediated by endogenous anxiolytic agents. This hypothesis is supported here by the finding of a significant increase of NPY transcriptional expression in the brain of fish fed with CAU enriched food, shedding more light on the neural mechanisms behind the altered behaviour of D. sargus.

Keywords

NPY Caulerpin Biological invasions Caulerpa cylindracea Diplodus sargus 

Notes

Acknowledgements

This study was funded by Regione Campania (BIO/02LAU/2015/POR Campania), and the Fundação para a Ciência e a Tecnologia—FCT (partially FEDER funded), now included in MARE (UID/MAR/04292/2013) (MARE/ISPA-IU). This work was also supported by a MARE/ISPA-IU project aiming for the biological monitoring of the Marine Protected Area of Avencas, financed by the Environmental Municipal Company of Cascais (Cascais Ambiente). The authors would like to thank António Roleira at MARE/ISPA-IU fish facility and Pedro Coelho, Diana Vieira, Ruxanda Lungu, Ana Coelho, José Neto and all volunteers for collecting wild fish in central west Portugal. This study was performed in accordance with the recommendations of the Animal Care and Use Committee of ISPA-Instituto Universtário, and undertaken under the supervision of an accredited expert in laboratory animal science (following FELASA category C recommendations). Permission for capturing fish at the field site was granted by the Portuguese Environmental Agency (APA) and by local authorities (Cascais Environmental Agency—Cascais Ambiente—and Coast Guard—Capitania de Cascais).

References

  1. Anjaneyulu ASR, Prakash CVS, Mallavadhani UV (1991) Two caulerpin analogues and a sesquiterpene from Caulerpa racemosa. Phytochemistry 30:3041–3042.  https://doi.org/10.1016/S0031-9422(00)98248-7 CrossRefGoogle Scholar
  2. Box A, Deudero S, Sureda A, Blanco A, Alòs J, Terrados J, Riera F (2009) Diet and physiological responses of Spondyliosoma cantharus (Linnaeus, 1758) to the Caulerpa racemosa var. cylindracea invasion. J Exp Mar Biol Ecol 380:11–19.  https://doi.org/10.1016/j.jembe.2009.08.010 CrossRefGoogle Scholar
  3. Cavalcante-Silva LHA, de Carvalho Correia AC, Barbosa-Filho JM, da Silva BA, Oliveira Santos BV, de Lira DP, Alexandre-Moreira MS (2013) Spasmolytic effect of caulerpine involves blockade of Ca2+ influx on guinea pig ileum. Mar Drugs 11(5):1553–1564.  https://doi.org/10.3390/md11051553 CrossRefGoogle Scholar
  4. D’Aniello B, Polese G, Luongo L, Scandurra A, Magliozzi L, Aria M, Pinelli C (2016) Neuroanatomical relationships between FMRFamide-immunoreactive components of the nervus terminalis and the topology of olfactory bulbs in teleost fish. Cell Tissue Res 364:43–57.  https://doi.org/10.1007/s00441-015-2295-4 CrossRefGoogle Scholar
  5. Deudero S, Box A, Alós J, Arroyod NL, Marbàc N (2011) Functional changes due to invasive species: food web shifts at shallow Posidonia oceanica seagrass beds colonized by the alien macroalga Caulerpa racemosa. Estuar Coast Shelf Sci 93:106–111.  https://doi.org/10.1016/j.ecss.2011.03.017 CrossRefGoogle Scholar
  6. Felline S, Caricato R, Cutignano A, Gorbi S, Lionetto MG, Mollo E, Terlizzi A (2012) Subtle effects of biological invasions: cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS One.  https://doi.org/10.1371/journal.pone.0038763 Google Scholar
  7. Felline S, Mollo E, Ferramosca A, Zara V, Regoli F, Gorbi S, Terlizzi A (2014) Can a marine pest reduce the nutritional value of Mediterranean fish flesh? Mar Biol 161:1275–1283.  https://doi.org/10.1007/s00227-014-2417-7 CrossRefGoogle Scholar
  8. Felline S, Mollo E, Cutignano A, Grauso L, Andaloro F, Castriota L, Terlizzi A (2017) Preliminary observations of caulerpin accumulation from the invasive Caulerpa cylindracea in native Mediterranean fish species. Acqut Biol 26:27–31.  https://doi.org/10.3354/ab00671 Google Scholar
  9. Gonçalves AR, Silva MF, Vendrell CL, Almada VC (2015) Agonistic behaviour and shoal composition of juvenile Diplodus sargus: first field observations. Environ Biol Fish 98(4):1015–1021.  https://doi.org/10.1007/s10641-014-0334-8 CrossRefGoogle Scholar
  10. Gorbi S, Giuliani ME, Pittura L, D’Errico G, Terlizzi A, Felline S, Regoli F (2014) Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Mar Environ Res 96:2–11.  https://doi.org/10.1016/j.marenvres.2014.01.010 CrossRefGoogle Scholar
  11. Holm JC, Refstie T, Bo S (1990) The effect of fish density and feeding regimes on individual growth rate and mortality in rainbow trout (Oncorhynchus mykiss). Aquaculture 89:225–232.  https://doi.org/10.1016/0044-8486(90)90128-A CrossRefGoogle Scholar
  12. Huntingford F, Tamilselvan P, Jenjan H (2012) Why do some fish fight more than others? Physiol Biochem Zool 85:585–593.  https://doi.org/10.1086/668204 CrossRefGoogle Scholar
  13. Ivesa L, Djakovac T, Devescovi M (2015) Spreading patterns of the invasive Caulerpa cylindracea Sonder along the west Istrian Coast (northern Adriatic Sea, Croatia). Mar Environ Res 107:1–7.  https://doi.org/10.1016/j.marenvres.2015.03.008 CrossRefGoogle Scholar
  14. Jeong I, Kim E, Kim S, Kim HK, Lee DW, Seong JY, Park HC (2018) mRNA expression and metabolic regulation of npy and agrp1/2 in the zebrafish brain. Neurosci Lett 66:73–79.  https://doi.org/10.1016/j.neulet.2018.01.017 CrossRefGoogle Scholar
  15. Jorgensen EH, Christiansen J, Jobling M (1993) Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus). Aquaculture 110:191–204.  https://doi.org/10.1016/0044-8486(93)90272-Z CrossRefGoogle Scholar
  16. Karl T, Herzog H (2007) Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 28:326–333.  https://doi.org/10.1016/j.peptides.2006.07.027 CrossRefGoogle Scholar
  17. Karl T, Lin S, Schwarzer C, Sainsbury A, Couzens M, Wittmann W, Herzog H (2004) Y1 receptors regulate aggressive behavior by modulating serotonin pathways. PNAS 101(34):12742–12747.  https://doi.org/10.1073/pnas.0404085101 CrossRefGoogle Scholar
  18. Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol 28:651–658.  https://doi.org/10.1016/j.tree.2013.05.005 CrossRefGoogle Scholar
  19. Klein J, Verlaque M (2008) The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull 56:205–225.  https://doi.org/10.1016/j.marpolbul.2007.09.043 CrossRefGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCt method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  21. Loh K, Herzog H, Shi Y-C (2015) Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 26:125–135.  https://doi.org/10.1016/j.tem.2015.01.003 CrossRefGoogle Scholar
  22. Magliozzi L, Almada F, Robalo J, Mollo E, Polese G, Gonçalves EJ, D’Aniello A (2017) Cryptic effects of biological invasions: reduction of the aggressive behaviour of a native fish under the influence of an “invasive” biomolecule. PLoS One 12(9):e0185620.  https://doi.org/10.1371/journal.pone.0185620 CrossRefGoogle Scholar
  23. Maiti BC, Thomson RH, Mahendran M (1978) The structure of caulerpin, a pigment from Caulerpa algae. J Chem Res Synop 2015:126–127Google Scholar
  24. Mathieu M, Tagliafierro G, Bruzzone F, Vallarino M (2002) Neuropeptide tyrosine-like immunoreactive system in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development. Dev Brain Res 139:255–265.  https://doi.org/10.1016/S0165-3806(02)00577-1 CrossRefGoogle Scholar
  25. Matsuda K (2009) Recent advances in the regulation of feeding behavior by neuropeptides in fish. Ann N Y Acad Sci 1163:241–250.  https://doi.org/10.1111/j.1749-6632.2008.03619.x CrossRefGoogle Scholar
  26. Matsuda K, Kang KS, Sakashita A, Yahashi S, Vaudry H (2011) Behavioral effect of neuropeptides related to feeding regulation in fish. Ann N Y Acad Sci 1220:117–126.  https://doi.org/10.1111/j.1749-6632.2010.05884.x CrossRefGoogle Scholar
  27. Matsuda K, Sakashita A, Yokobori E, Azuma M (2012) Neuroendocrine control of feeding behavior and psychomotor activity by neuropeptideY in fish. Neuropeptides 46:275–283.  https://doi.org/10.1016/j.npep.2012.09.006 CrossRefGoogle Scholar
  28. McCormick MI (2012) Lethal effects of habitat degradation on fishes through changing competitive advantage. Proc R Soc B 279:3899–3904.  https://doi.org/10.1098/rspb.2012.0854 CrossRefGoogle Scholar
  29. McCormick MI, Meekan MG (2010) The importance of attitude: the influence of behaviour on survival at an ontogenetic boundary. Mar Ecol Prog Ser 407:173–185.  https://doi.org/10.3354/meps08583 CrossRefGoogle Scholar
  30. Meyer KD, Paul VJ (1992) Intraplant variation in secondary metabolite concentration in three species of Caulerpa (Chlorophyta, Caulerpales) and its effects on herbivorous fishes. Mar Ecol Prog Ser 82:249–257CrossRefGoogle Scholar
  31. Micale V, Campo S, D’Ascola A, Guerrera MC, Levanti MB, Germanà A, Muglia U (2012) Cholecystokinin in white sea bream: molecular cloning, regional expression, and immunohistochemical localization in the gut after feeding and fasting. PLoS One 7(12):e52428.  https://doi.org/10.1371/journal.pone.0052428 CrossRefGoogle Scholar
  32. Mollo E, Cimino G, Ghiselin M (2015) Alien biomolecules: a new challenge for natural product chemists. Biol Invasions 17:941–950.  https://doi.org/10.1007/s10530-014-0835-6 CrossRefGoogle Scholar
  33. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):485–492.  https://doi.org/10.1890/070064 CrossRefGoogle Scholar
  34. Munoz-Cueto JA, Sarasquete C, Zohar Y, Kah O (2001) An atlas of the brain of the gilthead seabream (Sparus aurata). Maryland Sea Grant, College ParkGoogle Scholar
  35. Papoutsoglou SE, Karakatsouli N, Pizzonia G, Dalla C, Polissidis A, Papadopoulou-Daifoti Z (2006) Effects of rearing density on growth, brain neurotransmitters and liver fatty acid composition of juvenile white seabream Diplodus sargus L. Aquacult Res 37:87–95.  https://doi.org/10.1111/j.1365-2109.2005.01401.x CrossRefGoogle Scholar
  36. Paul VJ, Hay ME, Duffy JE, Fenical W, Gustafson K (1987) Chemical defense in the seaweed Ochtodes secundiranea (Rhodophyta): effects of its monoterpenoid components upon diverse coral-reef herbivores. J Exp Mar Biol Ecol 114:249–260CrossRefGoogle Scholar
  37. Paul VJ, Nelson SG, Sanger HR (1990) Feeding preferences of adult and juvenile rabbitfish Siganus argenteus in relation to chemical defenses of tropical seaweeds. Mar Ecol Prog Ser Oldend 60(1):23–34CrossRefGoogle Scholar
  38. Piazzi L, Balata D (2008) The spread of Caulerpa racemosa var. cylindracea in the Mediterranean Sea: an example of how biological invasions can influence beta diversity. Mar Environ Res 65:50–61.  https://doi.org/10.1016/j.marenvres.2007.07.002 CrossRefGoogle Scholar
  39. Piazzi L, Cinelli F (2001) Distribution and dominance of two introduced turf-forming macroalgae on the coast of Tuscany, Italy, northwestern Mediterranean Sea in relation to different habitats and sedimentation. Bot Mar 44(5):509–520.  https://doi.org/10.1515/BOT.2001.057 CrossRefGoogle Scholar
  40. Pirone A, Lenzi C, Marroni P, Betti L, Mascia G, Giannaccini G, Fabiani O (2008) Neuropeptide Y in the brain and retina of the adult teleost gilthead seabream (Sparus aurata L.). Anat Histol Embryol 37:231–240.  https://doi.org/10.1111/j.1439-0264.2007.00836.x CrossRefGoogle Scholar
  41. Sala E, Ballesteros E (1997) Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar Ecol Prog Ser 152:273–283.  https://doi.org/10.3354/meps152273 CrossRefGoogle Scholar
  42. Schmeltzer SN, Herman JP, Sah R (2016) Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): a translational update. Exp Neurol 284:196–210.  https://doi.org/10.1016/j.expneurol.2016.06.020 CrossRefGoogle Scholar
  43. Terlizzi A, Felline S, Lionetto MG, Caricato R, Perfetti V, Cutignano A, Mollo E (2011) on the Mediterranean white seabream Diplodus sargus. Aquat Biol 12:109–117.  https://doi.org/10.3354/ab00330 CrossRefGoogle Scholar
  44. Vázquez-Luis M, Sanchez-Jerez P, Bayle-Sempere JT (2009) Comparison between amphipod assemblages associated with Caulerpa racemosa var. cylindracea and those of other Mediterranean habitats on soft substrate. Estuar Coast Shelf Sci 84:161–170.  https://doi.org/10.1016/j.ecss.2009.04.016 CrossRefGoogle Scholar
  45. Verlaque M, Durand C, Huisman JM, Boudouresque CF, Le Parco Y (2003) On the identity and origin of the Mediterranean invasive Caulerpa racemosa (Caulerpales, Chlorophyta). Eur J Phycol 38:325–339.  https://doi.org/10.1080/09670260310001612592 CrossRefGoogle Scholar
  46. Vitale RM, D’Aniello E, Gorbi S, Martella A, Silvestri C, Giuliani ME, Mollo E (2018) Fishing for targets of alien metabolites: a novel peroxisome proliferator-activated receptor (PPAR) agonist from a marine pest. Mar Drugs 16:431.  https://doi.org/10.3390/md16110431 CrossRefGoogle Scholar
  47. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks M (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  48. Volkoff H (2016) The neuroendocrine regulation of food intake in fish: a review of current knowledge. Front Neurosci 10:540.  https://doi.org/10.3389/fnins.2016.00540 CrossRefGoogle Scholar
  49. Winberg S, Myrberg AA Jr, Nilsson GE (1996) Agonistic interactions affect brain serotonergic activity in an acanthopterygiian fish: the bicolor damselfish (Pomacentrus partitus). Brain Behav Evol 48(4):213–220.  https://doi.org/10.1159/000113199 CrossRefGoogle Scholar
  50. Wylie CR, Paul VJ (1988) Feeding preferences of surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Mar Ecol Prog Ser 45:23–23CrossRefGoogle Scholar
  51. Yang P, Liu DQ, Liang TJ, Li J, Zhang H-Y, Liu H-A, Guo Y-W, Mao S-C (2015) Bioactive constituents from the green alga Caulerpa racemosa. Bioorg Med Chem 23:38–45.  https://doi.org/10.1016/j.bmc.2014.11.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di BiologiaUniversità degli Studi di Napoli “Federico II”NaplesItaly
  2. 2.MARE, Marine and Environmental Sciences CentreISPA, Instituto UniversitárioLisbonPortugal
  3. 3.Istituto di Chimica BiomolecolareConsiglio Nazionale delle RicercheNaplesItaly

Personalised recommendations