Skip to main content
Log in

Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We show in a comparative analysis that distinct retinal specializations in insect ocelli are much more common than previously realized and that the rhabdom organization of ocellar photoreceptors is extremely diverse. Hymenoptera, Odonata and Diptera show prominent equatorial fovea-like indentations of the ocellar retinae, where distal receptor endings are furthest removed from the lens surface and receptor densities are highest. In contrast, rhabdomere arrangements are very diverse across insect groups: in Hymenoptera, with some exceptions, pairs of ocellar retinular cells form sheet-like rhabdoms that form elongated rectangular shapes in cross-section, with highly aligned microvilli directions perpendicular to the long axis of cross-sections. This arrangement makes most ocellar retinular cells in Hymenoptera sensitive to the direction of polarized light. In dragonflies, triplets of retinular cells form a y-shaped fused rhabdom with microvilli directions oriented at 60° to each other. In Dipteran ocellar retinular cells microvilli directions are randomised, which destroys polarization sensitivity. We suggest that the differences in ocellar organization between insect groups may reflect the different head attitude control systems that have evolved in these insect groups, but possibly also differences in the mode of locomotion and in the need for celestial compass information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berry RP, Warrant EJ, Stange G (2007a) Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the locust ocelli. Vis Res 47:1382–1393

    Article  PubMed  Google Scholar 

  • Berry RP, Warrant EJ, Stange G (2007b) Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the dragonfly median ocellus. Vis Res 47:1394–1409

    Article  PubMed  Google Scholar 

  • Berry RP, Wcislo WT, Warrant EJ (2011) Ocellar adaptations for dim light vision in a nocturnal bee. J Exp Biol 214:1283–1293

    Article  PubMed  Google Scholar 

  • Chahl J, Mizutani A (2012) Biomimetic attitude and orientation sensors. IEEE Sens J 12(2):289–297

    Article  Google Scholar 

  • Dickens JC, Eaton JL (1974) Fine structure of ocelli in sphinx moths. Tissue Cell 6:463–470

    Article  CAS  PubMed  Google Scholar 

  • Dow MA, Eaton JL (1976) Fine structure of the ocellus of the cabbage looper moth (Trichoplusia ni). Cell Tissue Res 171:523–533

    Article  CAS  PubMed  Google Scholar 

  • Fent K, Wehner R (1985) Ocelli—a celestial compass in the desert ant Cataglyphis. Science 228:192–194

    Article  CAS  PubMed  Google Scholar 

  • Fuller SB, Karpelson M, Censi A, Ma KY, Wood RJ (2014) Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. J R Soc Interface 11:20140281

    Article  PubMed  PubMed Central  Google Scholar 

  • Futahashi R, Kawahara-Miki R, Kinoshita M, Yoshitake K, Yajima S, Arikawa K, Fukatsu T (2015) Extraordinary diversity of visual opsin genes in dragonflies. Proc Nat Acad Sci 112:E1247-E1256

    Article  PubMed Central  Google Scholar 

  • Geiser FX, Labhart T (1982) Electrophysiological investigation on the ocellar retina of the honeybee (Apis mellifera). Verh Dtsch Zool Gesellschaft 75:307

    Google Scholar 

  • Goldsmith TH, Ruck PR (1958) The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees. J Gen Physiol 41:1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gremillion G, Humbert JS, Krapp HG (2014) Bio-inspired modeling and implementation of the ocelli visual system of flying insects. Biol Cybern 108:735–746

    Article  PubMed  Google Scholar 

  • Grünewald B, Wunderer H (1996) The ocelli of arctiid moths: ultrastructure of the retina during light and dark adaptation. Tissue Cell 28:267–277

    Article  PubMed  Google Scholar 

  • Hallberg E, Hagberg M (1986) Ocellar fine structure in Caenis robusta (Ephemeroptera), Trichostegia minor, Agrypnia varia, and Limnephilus flavicornis (Trichoptera). Protoplasma 135:12–18

    Article  Google Scholar 

  • Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertweck H (1931) Anatomie und Variabilität des Nervensystems und der Sinnesorgane von Drosophila melanogaster (Meigen). Z Wiss Zool 139:559–663

    Google Scholar 

  • Honkanen A, Saari P, Takalo J, Heimonen K, Weckström M (2017) The role of ocelli in cockroach optomotor performance. J Comp Physiol A 204:231–243

    Article  Google Scholar 

  • Hung Y-S, Ibbotson MR (2014) Ocellar structure and neural innervation in the honeybee. Front Neuroanat 8:1–11

    Article  Google Scholar 

  • Insausti TC, Lazzari CR (2002) The fine structure of the ocelli of Triatoma infestans (Hemiptera: Reduviidae). Tissue Cell 34(6):437–449

    Article  CAS  PubMed  Google Scholar 

  • Kerfoot WB (1967a) Correlation between ocellar size and the foraging activities of bees (Hymenoptera; Apoidea). Am Nat 101:65–70

    Article  Google Scholar 

  • Kerfoot WB (1967b) Dorsal light receptors. Nature 215:305–307

    Article  Google Scholar 

  • Kral K (1978) The orientation of the rhabdoms in the ocelli of Apis mellifera carnia Pollm. and of Vespa vulgaris L. Zool Jahrb Physiol 82:263–271

    Google Scholar 

  • Krapp HG (2009) Ocelli. Curr Biol 19:R435–R437

    Article  CAS  PubMed  Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Article  CAS  PubMed  Google Scholar 

  • Lazzari CR, Fischbein D, Insausti TC (2011) Differential control of light–dark adaptation in the ocelli and compound eyes of Triatoma infestans. J Insect Physiol 57:1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1980) Electrophysiologically determined spectral efficiencies of the compound eye and median ocellus in the Bumblebee Bombus hortorum tarhakimalainen (Hymenoptera, Insecta). J Comp Physiol 139:261–266

    Article  Google Scholar 

  • Mizunami M (1994) Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits. Adv Insect Physiol 25:151–265

    Article  CAS  Google Scholar 

  • Mizunami M (1995) Functional diversity of neural organization in insect ocellar systems. Vis Res 35:443–452

    Article  CAS  PubMed  Google Scholar 

  • Müller H (1875) Function of the ocelli of hymenopterous insects. Nature 15:167–168

    Article  Google Scholar 

  • Narendra A, Ribi W (2017) Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. J Exp Biol 220:4383–4390

    Article  PubMed  Google Scholar 

  • Narendra A, Ramirez-Esquivel F, Ribi WA (2016) Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus. Sci Rep 6:22331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Ribi W, Zeil J, Hemmi JM (2017) Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors. J Exp Biol 220:1701–1708

    Article  PubMed  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2006) A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol 209:4464–4474

    Article  PubMed  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2010) Sensor fusion in identified visual interneurons. Curr Biol 20:624–628

    Article  CAS  PubMed  Google Scholar 

  • Ribi WA, Zeil J (2015) The visual system of the Australian ‘Redeye’ Cicada (Psaltoda moerens). Arthropod Struct Dev 44:574–586

    Article  PubMed  Google Scholar 

  • Ribi W, Zeil J (2017) Three-dimensional visualization of ocellar interneurons of the Orchid bee Euglossa imperialis using micro X-ray Computed Tomography. J Comp Neurol 525:3581–3595

    Article  CAS  PubMed  Google Scholar 

  • Ribi WA, Warrant EJ, Zeil J (2011) The organization of honeybee ocelli: regional specialization and rhabdom arrangements. Arthropod Struct Dev 40:509–520

    Article  PubMed  Google Scholar 

  • Ruck P, Edwards GA (1964) The structure of the insect dorsal ocellus. I. General organization of the ocellus in dragonflies. J Morphol 115:1–26

    Article  Google Scholar 

  • Schwarz S, Albert L, Wystrach A, Cheng K (2011) Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. J Exp Biol 214:901–906

    Article  PubMed  Google Scholar 

  • Somanathan H, Kelber A, Borges RM, Wallén R, Warrant EJ (2009) Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. J Comp Physiol A 195:571–583

    Article  Google Scholar 

  • Stange G (1981) The ocellar component of flight equilibrium control in dragonflies. J Comp Physiol A 141:335–347

    Article  Google Scholar 

  • Stange G, Howard J (1979) An ocellar dorsal light response in a dragonfly. J Exp Biol 83:351–355

    Google Scholar 

  • Stange GS, Stowe JS, Chahl JS, Massro A (2002) Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. J Comp Physiol A 188:455–467

    Article  CAS  Google Scholar 

  • Taylor GJ, Ribi W, Bech M, Bodey AJ, Rau C, Steuwer A, Warrant EJ, Baird E (2016) The dual function of orchid bee ocelli as revealed by X-ray microtomography. Curr Biol 26:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Toh Y, Kuwabara M (1974) Fine structure of the dorsal ocellus of the worker honeybee. J Morphol 143:285–306

    Article  Google Scholar 

  • Toh Y, Kuwabara M (1975) Synaptic organization of the fleshfly ocellus. J Neurocytol 4:271–287

    Article  CAS  PubMed  Google Scholar 

  • Toh Y, Sagara H (1984) Dorsal ocellar system of the American cockroach. I. Structure of the ocellus and ocellar nerve. J Ultrastruct Res 86:119–134

    Article  Google Scholar 

  • Toh Y, Tominaga Y, Kuwabara M (1971) The fine structure of the dorsal ocellus of the fleshfly. J Electronmicrosc 20:56–56

    Google Scholar 

  • van Kleef J, James AC, Stange G (2005) A spatiotemporal white noise analysis of photoreceptor responses to UV and green light in the dragonfly median ocellus. J Gen Physiol 126:481–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Warrant EJ, Kelber A, Walle´n R, Wcislo W (2006) Ocellar optics in diurnal and nocturnal bees and wasps. Arthropod Struct Dev 35:293–305

    Article  PubMed  Google Scholar 

  • Weber G, Renner M (1976) The ocellus of the cockroach, Periplaneta americana (Blattariae). Receptro area. Cell Tissue Res 168:209–222

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Hua B (2011) Ultrastructural comparison of the ocelli of Sinopanorpa tincta and Bittacus planus (Mecoptera). Microsc Res Tech 74:502–511

    Article  PubMed  Google Scholar 

  • Wellington WG (1974) Bumblebee ocelli and navigation at dusk. Science 183:550–551

    Article  CAS  PubMed  Google Scholar 

  • Wheeler W (1936) Binary anterior ocelli in ants. Biol Bull 70:185–192

    Article  Google Scholar 

  • Wilson M (1978) The functional organization of locust ocelli. J Comp Physiol 124:297–316

    Article  Google Scholar 

  • Wunderlich H (1988) The fine structure of the dorsal ocelli in the male bibionid fly. Tissue Cell 20:145–155

    Article  Google Scholar 

  • Yoon C-S, Hirosawa K, Suzuki E (1996) Studies on the structure of ocellar photoreceptor cells of Drosophila melanogaster with special reference to subrhabdomeric cisternae. Cell Tissue Res 284:77–85

    Article  CAS  PubMed  Google Scholar 

  • Zeil J, Ribi W, Narendra A (2014) Polarisation vision in ants, bees and wasps. In: Horvath G (ed) Polarized light and polarization vision in animal sciences. Springer, Heidelberg, pp 41–60

    Google Scholar 

Download references

Acknowledgements

We thank the ANU Centre of Advanced Microscopy (CAM) for the use of their facilities, CSIRO Entomology for identification of some insects and Michael Batley, Australian Museum, Sydney, for the identification of Amegilla. The work was made possible by financial support from the ANU endowment fund. We thank Joanne Lee (CAM), Rainer Foelix (Aarau), Hua Chun (CAM) for their help with SEM scanning, and Ladina Ribi, Sara Wood and Sharyn Wragg for preparing the drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zeil.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribi, W., Zeil, J. Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera. J Comp Physiol A 204, 505–517 (2018). https://doi.org/10.1007/s00359-018-1258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-018-1258-0

Keywords

Navigation