Journal of Comparative Physiology A

, Volume 196, Issue 11, pp 807–816 | Cite as

The auditory system of non-calling grasshoppers (Melanoplinae: Podismini) and the evolutionary regression of their tympanal ears

  • Gerlind U. C. Lehmann
  • Sandra Berger
  • Johannes Strauß
  • Arne W. Lehmann
  • Hans-Joachim Pflüger
Original Paper


Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3–5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.


Insect hearing Acoustic communication Orthoptera Vestigialisation Evolution of nervous system 



We thank Anja Klöpfel and Jan Sradnick, University of Göttingen, for repeatedly collecting and sending Peripodisma tymphii from Greece. We thank Klaus Riede for the stimulating discussions. We appreciate the help of Robert Hickson and the two anonymous referees in the improvement of this manuscript.


  1. Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353CrossRefGoogle Scholar
  2. Buzetti FM, Fontana P (2002) Observations on a peculiar mating behaviour of some Podismini of the Italian fauna. Atti Acc Rov Agiati 252:29–37Google Scholar
  3. Cardone B, Fullard JH (1988) Auditory characteristics and sexual dimorphism in the gypsy moth. Physiol Entomol 13:9–14CrossRefGoogle Scholar
  4. Clements AN, May TE (1974) Pharmacological studies on a locust neuromuscular preparation. J Exp Biol 61:421–442PubMedGoogle Scholar
  5. Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84:51–74CrossRefPubMedGoogle Scholar
  6. Eades DC, Otte D (2009) Orthoptera species file online. Version 2.0/3.5. [2009-11-11].
  7. Flook PK, Klee S, Rowell CHF (2000) Molecular phylogenetic analysis of the Pneumoroidea (Orthoptera, Caelifera): molecular data resolve morphological character conflicts in the basal Acridomorpha. Mol Phylogenet Evol 15:345–354CrossRefPubMedGoogle Scholar
  8. Fong DW, Kane TC, Culver DC (1995) Evolution of vestigial and nonfunctional characters. Annu Rev Ecol Syst 26:249–268CrossRefGoogle Scholar
  9. Fullard JH (1994) Auditory changes in noctuid moths endemic to a bat-free habitat. J Evol Biol 7:435–445CrossRefGoogle Scholar
  10. Fullard JH, Yack JE (1993) The evolutionary biology of insect hearing. Trends Ecol Evol 8:248–252CrossRefGoogle Scholar
  11. Fullard JH, Ratcliffe JM, Soutar AR (2004) Extinction of the acoustic startle response in moths endemic to a bat-free habitat. J Evol Biol 17:856–861CrossRefPubMedGoogle Scholar
  12. Fullard JH, Ratcliffe JM, ter Hofstede H (2007) Neural evolution in the bat-free habitat of Tahiti: partial regression in an anti-predator auditory system. Biol Lett 22:26–28CrossRefGoogle Scholar
  13. Fullard JH, ter Hofstede HM, Ratcliffe JM, Pollack GS, Brigidi GS, Tinghitella RM, Zuk M (2010) Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus. Naturwissenschaften 97:53–61CrossRefPubMedGoogle Scholar
  14. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, ChicagoGoogle Scholar
  15. Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc Lond B 243:75–94CrossRefGoogle Scholar
  16. Greenfield M (2002) Signalers and receivers. Mechanisms and evolution of arthropod communication. Oxford University Press, OxfordGoogle Scholar
  17. Greenfield M, Hohendorf H (2009) Independence of sexual and anti-predator perceptual functions in an acoustic moth: implications for the receiver bias mechanism in signal evolution. Ethology 115:1137–1149CrossRefGoogle Scholar
  18. Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253:517–528CrossRefPubMedGoogle Scholar
  19. Harz K (1975) Die Orthopteren Europas. Volume II, Caelifera. Dr. W. Junk Publishers, The HagueGoogle Scholar
  20. Höbel G, Schul J (2007) Listening for males and bats: spectral processing in the hearing organ of Neoconocephalus bivocatus (Orthoptera: Tettigoniidae). J Comp Physiol A 193:917–925. doi: 10.1007/s00359-007-0245-7 CrossRefGoogle Scholar
  21. Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) Comparative and evolutionary biology of hearing. Springer, New York, pp 115–130Google Scholar
  22. Jacobs W (1953) Verhaltensbiologische Studien an Feldheuschrecken. Z Tierpsychol Beih 1: VII + 228 ppGoogle Scholar
  23. Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocerca gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285CrossRefGoogle Scholar
  24. Knetsch H (1939) Die Korrelation der Ausbildung der Tympanalorgane, der Flügel, der Stridulationsapparate und anderer Organsysteme bei den Orthopteren. Arch Naturgesch 8:1–69Google Scholar
  25. Köhler G, Reinhardt K, Asshof R (1999) Zur Biologie der Tessiner Gebirgsschrecke Miramella formosanta (Fruhstorfer, 1921). Mitt Schweiz Entomol Ges 72:315–328Google Scholar
  26. Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT, Coss RG, Donohue K, Foster SA (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496CrossRefPubMedGoogle Scholar
  27. Lakes-Harlan R, Bailey WJ, Schikorski T (1991) The auditory system of an atympanate bushcricket Phasmodes ranatriformes (Westwood) (Tettigoniidae: Orthoptera). J Exp Biol 158:307–324Google Scholar
  28. Lane KA, Lucas KM, Yack JE (2008) Hearing in a diurnal, mute butterfly, Morpho peleides (Papilionoidea, Nymphalidae). J Comp Neurol 508:677–686CrossRefPubMedGoogle Scholar
  29. Lehmann GUC, Strauß J, Lakes-Harlan R (2007) Listening when there is no sexual signalling? Maintenance of hearing in the asexual bushcricket Poecilimon intermedius. J Comp Physiol A 193:537–545CrossRefGoogle Scholar
  30. Mason JB (1968) The tympanal organ of Acridomorpha (Orthoptera). EOS 44:267–355Google Scholar
  31. Meyer J, Elsner E (1996) How well are frequency sensitivities of grasshopper ears tuned to species-specific song spectra? J Exp Biol 199:1631–1642PubMedGoogle Scholar
  32. Michel K (1980) Die Scolopalorgane in den atympanalen Tibien von Gryllus bimaculatus De Geer und Phaeophilacris spectrum Saussure (Gryllidae, Insecta). Zool Jb Anat Ontogenie Tiere 103:122–132Google Scholar
  33. Michelsen A (1971) The physiology of the locust ear III. Acoustical properties of the intact ear. Z Vergl Physiol 71:102–128CrossRefGoogle Scholar
  34. Neuhofer D, Wohlgemuth S, Stumpner A, Ronacher B (2008) Evolutionarily conserved coding properties of auditory neurons across grasshopper species. Proc R Soc B 275:1965–1974CrossRefPubMedGoogle Scholar
  35. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804CrossRefPubMedGoogle Scholar
  36. Otte D (1970) A comparative study of communicative behaviour in grasshoppers. Misc Publ Mus Zool Univ Mich 141:1–167Google Scholar
  37. Otte D (1990) The relation between hearing and flying in crickets. Entomol News 101:29–34Google Scholar
  38. Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin, pp 139–196Google Scholar
  39. Pollack GS, Martins R (2007) Flight and hearing: ultrasound sensitivity differs between flight-capable and flight-incapable morphs of a wing-dimorphic cricket species. J Exp Biol 210:3160–3164CrossRefPubMedGoogle Scholar
  40. Porter ML, Crandall KA (2003) Lost along the way: the significance of evolution in reverse. Trends Ecol Evol 18:541–547CrossRefGoogle Scholar
  41. Ramme W (1951) Zur Systematik, Faunistik und Biologie der Orthopteren von Südost-Europa und Vordeerasien. Mitt Zool Mus Berlin 27:432 pp+39 plGoogle Scholar
  42. Rasband WS (1997–2009) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA.
  43. Rehbein H (1972) Experimentell-anatomische Untersuchungen über den Verlauf der Tympanalfasern im Bauchmark von Feldheuschrecken, Laubheuschrecken und Grillen. Verh Dtsch Zool Ges 66:184–189Google Scholar
  44. Rehbein H, Kalmring K, Römer H (1974) Structure and function of acoustic neurons in the thoracic ventral nerve cord of Locusta migratoria (Acrididae). J Comp Physiol A 95:263–280CrossRefGoogle Scholar
  45. Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296CrossRefGoogle Scholar
  46. Riede K, Kämper G, Höfler I (1990) Tympana, auditory thresholds and projection areas of tympanal nerves in singing and silent grasshoppers (Insecta, Acridoidea). Zoomorphology 109:223–230CrossRefGoogle Scholar
  47. Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301Google Scholar
  48. Robinson DJ, Hall MJ (2002) Sound signalling in Orthoptera. Adv Insect Physiol 29:151–278CrossRefGoogle Scholar
  49. Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol A 109:101–122CrossRefGoogle Scholar
  50. Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin, pp 63–96Google Scholar
  51. Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262CrossRefGoogle Scholar
  52. Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215CrossRefPubMedGoogle Scholar
  53. Stumpner A, Ronacher B (1991) Auditory interneurons in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I. Morphological and physiological characterization. J Exp Biol 158:391–410Google Scholar
  54. Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170CrossRefPubMedGoogle Scholar
  55. Tinghitella RM (2008) Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100:261–267CrossRefPubMedGoogle Scholar
  56. Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544CrossRefPubMedGoogle Scholar
  57. Yager DD (1990) Sexual dimorphism of auditory function and structure in praying mantises Mantodea; Dictyoptera. J Zool 221:517–537CrossRefGoogle Scholar
  58. Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Tech 47:380–400CrossRefPubMedGoogle Scholar
  59. Zuk M, Rotenberry JT, Tinghitella RM (2006) Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol Lett 2:521–524CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gerlind U. C. Lehmann
    • 1
    • 2
  • Sandra Berger
    • 2
    • 3
  • Johannes Strauß
    • 4
  • Arne W. Lehmann
    • 5
  • Hans-Joachim Pflüger
    • 6
  1. 1.Institute of Biology/Zoology, Animal BehaviorFreie Universität BerlinBerlinGermany
  2. 2.Department of Biology, Behavioural PhysiologyHumboldt Universität zu BerlinBerlinGermany
  3. 3.School of Life SciencesArizona State UniversityTempeUSA
  4. 4.Department of Zoology, Functional ZoomorphologyStockholm UniversityStockholmSweden
  5. 5.StahnsdorfGermany
  6. 6.Institut für Biologie-Neurobiologie, Fachbereich Biologie, Chemie, PharmazieFreie Universität BerlinBerlinGermany

Personalised recommendations