Skip to main content
Log in

The auditory system of non-calling grasshoppers (Melanoplinae: Podismini) and the evolutionary regression of their tympanal ears

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3–5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353

    Article  Google Scholar 

  • Buzetti FM, Fontana P (2002) Observations on a peculiar mating behaviour of some Podismini of the Italian fauna. Atti Acc Rov Agiati 252:29–37

    Google Scholar 

  • Cardone B, Fullard JH (1988) Auditory characteristics and sexual dimorphism in the gypsy moth. Physiol Entomol 13:9–14

    Article  Google Scholar 

  • Clements AN, May TE (1974) Pharmacological studies on a locust neuromuscular preparation. J Exp Biol 61:421–442

    CAS  PubMed  Google Scholar 

  • Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84:51–74

    Article  PubMed  Google Scholar 

  • Eades DC, Otte D (2009) Orthoptera species file online. Version 2.0/3.5. [2009-11-11]. http://Orthoptera.SpeciesFile.org

  • Flook PK, Klee S, Rowell CHF (2000) Molecular phylogenetic analysis of the Pneumoroidea (Orthoptera, Caelifera): molecular data resolve morphological character conflicts in the basal Acridomorpha. Mol Phylogenet Evol 15:345–354

    Article  CAS  PubMed  Google Scholar 

  • Fong DW, Kane TC, Culver DC (1995) Evolution of vestigial and nonfunctional characters. Annu Rev Ecol Syst 26:249–268

    Article  Google Scholar 

  • Fullard JH (1994) Auditory changes in noctuid moths endemic to a bat-free habitat. J Evol Biol 7:435–445

    Article  Google Scholar 

  • Fullard JH, Yack JE (1993) The evolutionary biology of insect hearing. Trends Ecol Evol 8:248–252

    Article  Google Scholar 

  • Fullard JH, Ratcliffe JM, Soutar AR (2004) Extinction of the acoustic startle response in moths endemic to a bat-free habitat. J Evol Biol 17:856–861

    Article  CAS  PubMed  Google Scholar 

  • Fullard JH, Ratcliffe JM, ter Hofstede H (2007) Neural evolution in the bat-free habitat of Tahiti: partial regression in an anti-predator auditory system. Biol Lett 22:26–28

    Article  Google Scholar 

  • Fullard JH, ter Hofstede HM, Ratcliffe JM, Pollack GS, Brigidi GS, Tinghitella RM, Zuk M (2010) Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus. Naturwissenschaften 97:53–61

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc Lond B 243:75–94

    Article  Google Scholar 

  • Greenfield M (2002) Signalers and receivers. Mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Greenfield M, Hohendorf H (2009) Independence of sexual and anti-predator perceptual functions in an acoustic moth: implications for the receiver bias mechanism in signal evolution. Ethology 115:1137–1149

    Article  Google Scholar 

  • Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253:517–528

    Article  CAS  PubMed  Google Scholar 

  • Harz K (1975) Die Orthopteren Europas. Volume II, Caelifera. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Höbel G, Schul J (2007) Listening for males and bats: spectral processing in the hearing organ of Neoconocephalus bivocatus (Orthoptera: Tettigoniidae). J Comp Physiol A 193:917–925. doi:10.1007/s00359-007-0245-7

    Article  Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) Comparative and evolutionary biology of hearing. Springer, New York, pp 115–130

    Google Scholar 

  • Jacobs W (1953) Verhaltensbiologische Studien an Feldheuschrecken. Z Tierpsychol Beih 1: VII + 228 pp

  • Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocerca gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285

    Article  Google Scholar 

  • Knetsch H (1939) Die Korrelation der Ausbildung der Tympanalorgane, der Flügel, der Stridulationsapparate und anderer Organsysteme bei den Orthopteren. Arch Naturgesch 8:1–69

    Google Scholar 

  • Köhler G, Reinhardt K, Asshof R (1999) Zur Biologie der Tessiner Gebirgsschrecke Miramella formosanta (Fruhstorfer, 1921). Mitt Schweiz Entomol Ges 72:315–328

    Google Scholar 

  • Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT, Coss RG, Donohue K, Foster SA (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496

    Article  PubMed  Google Scholar 

  • Lakes-Harlan R, Bailey WJ, Schikorski T (1991) The auditory system of an atympanate bushcricket Phasmodes ranatriformes (Westwood) (Tettigoniidae: Orthoptera). J Exp Biol 158:307–324

    Google Scholar 

  • Lane KA, Lucas KM, Yack JE (2008) Hearing in a diurnal, mute butterfly, Morpho peleides (Papilionoidea, Nymphalidae). J Comp Neurol 508:677–686

    Article  PubMed  Google Scholar 

  • Lehmann GUC, Strauß J, Lakes-Harlan R (2007) Listening when there is no sexual signalling? Maintenance of hearing in the asexual bushcricket Poecilimon intermedius. J Comp Physiol A 193:537–545

    Article  Google Scholar 

  • Mason JB (1968) The tympanal organ of Acridomorpha (Orthoptera). EOS 44:267–355

    Google Scholar 

  • Meyer J, Elsner E (1996) How well are frequency sensitivities of grasshopper ears tuned to species-specific song spectra? J Exp Biol 199:1631–1642

    PubMed  Google Scholar 

  • Michel K (1980) Die Scolopalorgane in den atympanalen Tibien von Gryllus bimaculatus De Geer und Phaeophilacris spectrum Saussure (Gryllidae, Insecta). Zool Jb Anat Ontogenie Tiere 103:122–132

    Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear III. Acoustical properties of the intact ear. Z Vergl Physiol 71:102–128

    Article  Google Scholar 

  • Neuhofer D, Wohlgemuth S, Stumpner A, Ronacher B (2008) Evolutionarily conserved coding properties of auditory neurons across grasshopper species. Proc R Soc B 275:1965–1974

    Article  PubMed  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Otte D (1970) A comparative study of communicative behaviour in grasshoppers. Misc Publ Mus Zool Univ Mich 141:1–167

    Google Scholar 

  • Otte D (1990) The relation between hearing and flying in crickets. Entomol News 101:29–34

    Google Scholar 

  • Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin, pp 139–196

    Google Scholar 

  • Pollack GS, Martins R (2007) Flight and hearing: ultrasound sensitivity differs between flight-capable and flight-incapable morphs of a wing-dimorphic cricket species. J Exp Biol 210:3160–3164

    Article  PubMed  Google Scholar 

  • Porter ML, Crandall KA (2003) Lost along the way: the significance of evolution in reverse. Trends Ecol Evol 18:541–547

    Article  Google Scholar 

  • Ramme W (1951) Zur Systematik, Faunistik und Biologie der Orthopteren von Südost-Europa und Vordeerasien. Mitt Zool Mus Berlin 27:432 pp+39 pl

  • Rasband WS (1997–2009) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/

  • Rehbein H (1972) Experimentell-anatomische Untersuchungen über den Verlauf der Tympanalfasern im Bauchmark von Feldheuschrecken, Laubheuschrecken und Grillen. Verh Dtsch Zool Ges 66:184–189

    Google Scholar 

  • Rehbein H, Kalmring K, Römer H (1974) Structure and function of acoustic neurons in the thoracic ventral nerve cord of Locusta migratoria (Acrididae). J Comp Physiol A 95:263–280

    Article  Google Scholar 

  • Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296

    Article  Google Scholar 

  • Riede K, Kämper G, Höfler I (1990) Tympana, auditory thresholds and projection areas of tympanal nerves in singing and silent grasshoppers (Insecta, Acridoidea). Zoomorphology 109:223–230

    Article  Google Scholar 

  • Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301

    Google Scholar 

  • Robinson DJ, Hall MJ (2002) Sound signalling in Orthoptera. Adv Insect Physiol 29:151–278

    Article  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol A 109:101–122

    Article  Google Scholar 

  • Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin, pp 63–96

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262

    Article  Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Article  PubMed  Google Scholar 

  • Stumpner A, Ronacher B (1991) Auditory interneurons in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I. Morphological and physiological characterization. J Exp Biol 158:391–410

    Google Scholar 

  • Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170

    Article  CAS  PubMed  Google Scholar 

  • Tinghitella RM (2008) Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100:261–267

    Article  CAS  PubMed  Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544

    Article  CAS  PubMed  Google Scholar 

  • Yager DD (1990) Sexual dimorphism of auditory function and structure in praying mantises Mantodea; Dictyoptera. J Zool 221:517–537

    Article  Google Scholar 

  • Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Tech 47:380–400

    Article  CAS  PubMed  Google Scholar 

  • Zuk M, Rotenberry JT, Tinghitella RM (2006) Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol Lett 2:521–524

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anja Klöpfel and Jan Sradnick, University of Göttingen, for repeatedly collecting and sending Peripodisma tymphii from Greece. We thank Klaus Riede for the stimulating discussions. We appreciate the help of Robert Hickson and the two anonymous referees in the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind U. C. Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, G.U.C., Berger, S., Strauß, J. et al. The auditory system of non-calling grasshoppers (Melanoplinae: Podismini) and the evolutionary regression of their tympanal ears. J Comp Physiol A 196, 807–816 (2010). https://doi.org/10.1007/s00359-010-0560-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0560-2

Keywords

Navigation