Stereoscopic particle image velocimetry of laser energy deposition on a mach 3.4 flow field

Abstract

Experiments were performed within Rutgers University’s supersonic wind tunnel to measure the influence of off-axis laser energy deposition on the flow field about an ogive cylinder at a freestream Mach number of 3.4. Perturbation of the flow field was accomplished using an infrared laser source, focused to a point ahead of the ogive cylinder. Stereoscopic particle image velocimetry measurements were performed to quantify the effects of energy deposition on the flow field at discrete time delays following the generation of the spark. The SPIV results showed a measurable change in streamwise velocity downstream of ogive’s shock that appears to be dependent on proximity of the initial spark to the ogive’s surface. In contrast, the spark was shown to have little influence on the vertical velocity component at early times. Data corresponding to later times showed the passage of an induced jet through the flow field. The jet rotated about its axis while passing through the shock structure, in agreement with previous qualitative imaging. These results demonstrate the feasibility of using SPIV to investigate the influence of laser energy deposition on the flow field.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Adelgren R, Yan H, Elliott G, Knight D, Beutner T, Zheltovodov A (2005) Control of edney iv interaction by pulsed laser energy deposition. AIAA J 43(2):256–269

    Article  Google Scholar 

  2. Adelgren RG (2002) Localized flow control with energy deposition. PhD thesis, Rutgers, The State University of New Jersey

  3. Alberti A, Munafò A, Pantano C, Panesi M (2020) Self-consistent computational fluid dynamics of supersonic drag reduction via upstream-focused laser-energy deposition. AIAA J. https://doi.org/10.2514/1.J059612

    Article  Google Scholar 

  4. Anderson KV, Knight DD (2012) Plasma jet for flight control. AIAA J 50(9):1855–1872

    Article  Google Scholar 

  5. Aure R, Jacobs JW (2008) Particle image velocimetry study of the shock-induced single mode Richtmyer-Meshkov instability. Shock Waves 18(3):161–167

    Article  Google Scholar 

  6. Belinger A, Hardy P, Barricau P, Cambronne JP (2011) Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator. J Phys D 44:365201. https://doi.org/10.1088/0022-3727/44/36/365201

    Article  Google Scholar 

  7. Bletzinger P, Ganguly BN, Van Wie D, Garscadden A (2005) Plasmas in high speed aerodynamics. J Phys D: Appl Phys 38:R33–R57

    Article  Google Scholar 

  8. Bright A, Tichenor N, Kremeyer K, Wlezien R (2018) Boundary-layer separation control using laser-induced air breakdown. AIAA J 56(4):1472–1482

    Article  Google Scholar 

  9. Buschbeck M, Bittner N, Halfmann T, Arndt S (2012) Dependence of combustion dynamics in a gasoline engine upon the in-cylinder flow field, determined by high-speed piv. Exp Fluids 53(6):1701–1712

    Article  Google Scholar 

  10. Caruana D, Barricau P, Hardy P, Cambronne JP, Belinger A (2009) The ‘plasma synthetic jet’ actuator. aero-thermodynamic characterization and first flow control applications. AIAA Paper 2009-1307 https://doi.org/10.2514/6.2009-1307

  11. Chen X, Bian B, Shen Z, Lu J, Ni X (2003) Equations of laser-induced plasma shock wave motion in air. Microw Opt Technol Lett 38(1):75–79

    Article  Google Scholar 

  12. Emerick T, Ali MY, Foster C, Alvi FS, Popkin S (2014) Sparkjet characterizations in quiescient and supersonic flowfields. Exp Fluids 55:1858

    Article  Google Scholar 

  13. Fomin VM, Tretyakov PK, Taran JP (2004) Flow control using various plasma and aerodynamic approaches (short review). Aerosp Sci Technol 8(5):411–421. https://doi.org/10.1016/j.ast.2004.01.005

    Article  Google Scholar 

  14. Glumac N, Elliott G (2007) The effect of ambient pressure on laser-induced plasmas in air. Opt Lasers Eng 45(1):27–35

    Article  Google Scholar 

  15. Grossman KR, Cybyk BZ, VanWie DM (2003) Sparkjet actuators for flow control. AIAA Paper No 2003-57

  16. Iwakawa A, Shoda T, Pham HS, Tamba T, Sasoh A (2016) Suppression of low-frequency shock oscillations over boundary layers by repetitive laser pulse energy deposition. Aerospace 3(2):13

    Article  Google Scholar 

  17. Kianvashrad N, Knight D (2019) Numerical simulation of laser energy discharge for flight control. J Phys D: Appl Phys 52(49):494005

    Article  Google Scholar 

  18. Kianvashrad N, Knight D, Wilkinson SP, Chou A, Horne RA, Herring GC, Beeler GB, Jangda M (2018) Effect of off-body laser discharge on drag reduction of hemisphere cylinder in supersonic flow-part II. AIAA Paper No 2018-1433

  19. Kim JH, Matsuda A, Sakai T, Sasoh A (2011) Wave drag reduction with acting spike induced by laser-pulse energy deposition. AIAA J 49(9):2076–2078

    Article  Google Scholar 

  20. Knight D (2008) Survey of aerodynamic drag reduction at high speed by energy deposition. J Propul Power 24(6):1153–1167

    MathSciNet  Article  Google Scholar 

  21. Knight D (2013) A summary of laser and microwave flow control in high-speed flows. Prog Flight Phys 5:125–138

    Article  Google Scholar 

  22. Ko HS, Haack SJ, Land HB, Cybyk B, Katz J, Kim HJ (2010) Analysis of flow distribution from high-speed flow actuator using particle image velocimetry and digital speckle tomography. Flow Meas Instrum 21:443–453

    Article  Google Scholar 

  23. Kontis K (2014) Development and application of laser-induced energy deposition for flow control of Edney Type IV interactions. Final Report FA8655-12-1-2007, University of Manchester Research Office

  24. Kopecek H, Maier H, Reider G, Winter F, Wintner E (2003) Laser ignition of methane-air mixtures at high pressures. Exp Therm Fluid Sci 27(4):499–503

    Article  Google Scholar 

  25. Kremeyer K (2015a) Energy deposition I: application to revolutionize high speed flight and flow control. AIAA Paper No 2015-3560

  26. Kremeyer K (2015b) Energy deposition II: physical mechanisms underlying techniques to achieve high-speed flow control. AIAA Paper No 2015-3502

  27. Lazar E, Elliott G, Glumac N (2008) Control of the shear layer above a supersonic cavity using energy deposition. AIAA J 46(12):2987–2997

    Article  Google Scholar 

  28. Lazar E, Elliott G, Glumac N (2009) Energy deposition applied to a transverse jet in a supersonic crossflow. AIAA Paper No 2009-1534

  29. Leonov SB (2011) Review of plasma-based methods for high-speed flow control. AIP Conf Proc 1376:498–502

    Article  Google Scholar 

  30. Leonov SB, Yarantsev DA (2008) Near-surface electrical discharge in supersonic airflow: properties and flow control. AIAA J 24(6):1168–1181

    Google Scholar 

  31. Merriman S, Ploenjes E, Palm P, Adamovich IV (2001) Shock wave control by nonequilibrium plasmas in cold supersonic gas flows. AIAA J 39(8):1547–1552

    Article  Google Scholar 

  32. Narayanaswamy V (2010) Investigation of a pulsed-plasma jet for separation shock/boundary layer interaction control. PhD thesis, The University of Texas at Austin

  33. Narayanaswamy V, Raja LL, Clemens NT (2012a) Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA J 50(1):246–249. https://doi.org/10.2514/1.J051246

    Article  Google Scholar 

  34. Narayanaswamy V, Raja LL, Clemens NT (2012b) Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys Fluids 24:076101. https://doi.org/10.1063/1.4731292

    Article  Google Scholar 

  35. Nishihara M, Takashima K, Rich JW, Adamovich IV (2011) Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge. Phys Fluids 23:066101

    Article  Google Scholar 

  36. Nishihara M, Freund JB, Glumac NG, Elliott GS (2018) Influence of mode-beating pulse on laser-induced plasma. J Phys D: Appl Phys 51:135601

    Article  Google Scholar 

  37. Osuka T, Erdem E, Hasegawa N, Majima R, Tamba T, Yokota S, Sasoh A, Kontis K (2014) Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations. Phys Fluids 26:096103

    Article  Google Scholar 

  38. Panco RB, DeMauro EP (2020) Measurements of a mach 3.4 turbulent boundary layer using stereoscopic particle image velocimetry. Exp Fluids 61(4):107

    Article  Google Scholar 

  39. Pham HS, Shoda T, Tamba T, Iwakawa A, Sasoh A (2017) Impacts of laser energy deposition on flow instability over double-cone model. AIAA J 55(9):2992–3000

    Article  Google Scholar 

  40. Phuoc TX (2006) Laser-induced spark ignition fundamental and applications. Opt Lasers Eng 44(5):351–397

    MathSciNet  Article  Google Scholar 

  41. Russell A, Zare-Behtash H, Kontis K (2016) Joule heating flow control methods for high-speed flows. J Electrost 80:34–68

    Article  Google Scholar 

  42. Samimy M, Lele SK (1991) Motion of particles with inertia in a compressible free shear layer. Phys Fluids 3(8):1915. https://doi.org/10.1063/1.857921

    Article  Google Scholar 

  43. Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P (2004) Development and characterization of plasma actuators for high-speed jet control. Exp Fluids 37(4):577–588

    Article  Google Scholar 

  44. Samimy M, Kim JH, Kastner J, Adamovich I, Utkin Y (2007) Active control of high-speed and high-reynolds-number jets using plasma actuators. J Fluid Mech 578:305–330

    Article  Google Scholar 

  45. Schülein E, Zheltovodov A, Pimonov E, Loginov M (2010) Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles. J Aerosp Innovat 2(3):165–187

    Article  Google Scholar 

  46. Singh A, Little J (2016) Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. AIAA Paper No 2016-0455

  47. Sperber D, Eckel HA, Steimer S, Fasoulas S (2012) Objectives of laser-induced energy deposition for active flow control. Contrib Plasma Phys 52(7):636–643

    Article  Google Scholar 

  48. Starikovskiy A, Limbach C, Miles R (2016) Trajectory control of small rotating projectiles by laser discharges. AIAA Paper 2016-0459 https://doi.org/10.2514/6.2016-0459

  49. Tamba T, Pham HS, Shoda T, Iwakawa A, Sasoh A (2015) Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition. Phys Fluids 27:091704

    Article  Google Scholar 

  50. Utkin YG, Keshav S, Kim JH, Kastner J, Adamovich IV, Samimy M (2007) Development and use of localized arc filament plasma actuators for high-speed flow control. J Phys D Appl Phys 40:685–694. https://doi.org/10.1088/0022-3727/40/3/S06

    Article  Google Scholar 

  51. Wieneke B (2015) Piv uncertainty quantification from correlation statistics. Measurement Sci Technol 26(7):074002

    Article  Google Scholar 

  52. Winters C, Wagner JL (2019) Interaction of burst-mode laser-induced-plasma with an overexpanded jet at 5–500 kHz repetition-rate. AIAA Paper No 2019-0835

  53. Yan H, Adelgren R, Boguszko M, Elliott G, Knight D (2003a) Laser energy deposition in quiescient air. AIAA J 41(10):1988–1995

    Article  Google Scholar 

  54. Yan H, Adelgren R, Elliott G, Knight D, Beutner T (2003b) Effect of energy addition on MR \(\rightarrow\) RR transition. Shock Waves 13(2):113–121. https://doi.org/10.1007/s00193-003-0198-x

    Article  Google Scholar 

  55. Yanji H, Diankai W, Qian L, Jifei Y (2014) Interaction of single-pulse laser energy with bow shock in hypersonic flow. Chin J Aeronaut 27(2):241–247

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Petrowski for his efforts in maintaining the SWT facility and for his advice in installing the smoke generator, Paul Pickard for his aid in constructing the wind tunnel models and Professor Doyle D. Knight for providing his expertise on the subject. The authors gratefully acknowledge the Emil Buehler Perpetual Trust for their support of the Buehler Supersonic Wind Tunnel.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward P. DeMauro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pournadali Khamseh, A., Kiriakos, R.M. & DeMauro, E.P. Stereoscopic particle image velocimetry of laser energy deposition on a mach 3.4 flow field. Exp Fluids 62, 39 (2021). https://doi.org/10.1007/s00348-021-03142-6

Download citation